Research Article
BibTex RIS Cite

Analysis of Current-Voltage Properties of Schottky Diode with TiO2 Interlayer Prepared by RF Magnetron Sputtering

Year 2024, Volume: 13 Issue: 4, 905 - 915, 31.12.2024
https://doi.org/10.17798/bitlisfen.1459003

Abstract

This study focuses on investigating the electrical behaviour of Metal-Insulator-Semiconductor (MIS) type Schottky barrier diodes based on titanium oxide (TiO2). An MIS-type Al/TiO2/p-Si Schottky diode structure was fabricated by depositing a TiO2 metal oxide thin film as an interlayer on p-type silicon using the technique of Radio Frequency Magnetron Sputtering at room temperature. The electrical performance of this fabricated structure was evaluated through the measurements of current-voltage (I-V) conducted in a dark environment at ±5 V and room temperature. These measurements enabled the determination of key Schottky diode parameters, including barrier height (Φb), saturation current (Io), and ideality factor (n), using both the Thermionic Emission (TE) method and the Cheung method. Utilizing the TE method, approximate values for Φb, n, and Io parameters were calculated as 0.59 eV, 4.07, and 2.78E-06 A, respectively. Meanwhile, employing Cheung’s method yielded approximate values of Φb and n parameters as 0.39 eV (H(I) vs I) and 4.39 (dV/dln(I) vs I), respectively. The analysis indicates that the developed Schottky diode functions as a rectifier diode, demonstrating typical diode characteristics. Furthermore, a comparison of numerous devices reported in the literature was conducted based on TiO2 preparation methods against the parameters of the TiO2/p-Si host device.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] M. A. Mastro, "Power MOSFETs and diodes," Gallium Oxide, Elsevier, pp. 401-418, 2019.
  • [2] E. F. Krimmel, R. Hezel, U. Nohl, and R. Bohrer, "Schottky Diodes" Si Silicon: Silicon Nitride in Microelectronics and Solar Cells, Heidelberg: Springer Berlin Heidelberg, pp. 204-205,1991.
  • [3] D. Sadek, A. Zekry, H. Shawkey, and S. Kayed, "10 GHz Compact Shunt-Diode Rectifier Circuit Using Thin Film Ag/AZO Schottky Barrier Diode for Energy Harvesting Applications," In International Conference on Human-Computer Interaction, Cham: Springer International Publishing, pp. 436-445, 2022.
  • [4] C. Xu, P. Yu, and Y. Jiang, "A macro model of RF Schottky diode in 22-nm CMOS and its application," Solid-State Electronics, vol. 154, pp. 7-11, 2019.
  • [5] N. Daghestani et al., "Room temperature ultrafast InGaAs Schottky diode based detectors for terahertz spectroscopy," Infrared Physics & Technology, vol. 99, pp. 240-247, 2019.
  • [6] M. Tilli and A. Haapalinna, "Chapter 1 - Properties of Silicon," in Handbook of Silicon Based MEMS Materials and Technologies (Second Edition), M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos Eds. Boston: William Andrew Publishing, pp. 3-17, 2015.
  • [7] Ö. Güllü, T. Kilicoglu, and A. Türüt, "Electronic properties of the metal/organic interlayer/inorganic semiconductor sandwich device," Journal of Physics and Chemistry of Solids, vol. 71, no. 3, pp. 351-356, 2010.
  • [8] Ö. Güllü and A. Turut, "Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures," Journal of Applied Physics, vol. 106, pp. 103717-103717, 2009.
  • [9] İ. Dökme, Ş. Altındal, T. Tunç, and İ. Uslu, "Temperature dependent electrical and dielectric properties of Au/polyvinyl alcohol (Ni, Zn-doped)/n-Si Schottky diodes," Microelectronics Reliability, vol. 50, no. 1, pp. 39-44, 2010.
  • [10] S. Sonmezoglu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, "Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode," Solid State Sciences, vol. 12, pp. 706-711, 2010.
  • [11] H. K. Henisch, "Metal-semiconductor Schottky barrier junctions and their applications," Proceedings of the IEEE, vol. 74, no. 6, pp. 894-894, 1986.
  • [12] S. M. Sze and K. K. Ng, Physics Of Semiconductor Devices, 3RD ED. Wiley India Pvt. Limited, 2008.
  • [13] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, 2002.
  • [14] H. Bentarzi, Transport in Metal-Oxide-Semiconductor Structures : Mobile Ions Effects on the Oxide Properties. 2011.
  • [15] M. Noman, M. A. Ashraf, and A. Ali, "Synthesis and applications of nano-TiO2: a review," Environmental Science and Pollution Research, vol. 26, 2019.
  • [16] F. Wang and J. Wu, "Chapter 8 - Magnetron sputtering," in Modern Ion Plating Technology, F. Wang and J. Wu Eds.: Elsevier, 2023, pp. 189-228.
  • [17] G. M. Ali, "Performance analysis of planar Schottky photodiode based on nanostructured ZnO thin film grown by three different techniques," Journal of Alloys and Compounds, vol. 831, pp. 154859, 2020.
  • [18] H. Ferhati, F. Djeffal, K. Kacha, A. Bendjerad, and A. Benhaya, "Influence of TCO intermediate thin-layers on the electrical and thermal properties of metal/TCO/p-Si Schottky structure fabricated via RF magnetron sputtering," Physica E: Low-dimensional Systems and Nanostructures, vol. 106, pp. 25-30, 2019.
  • [19] R. Raj, H. Gupta, and L. P. Purohit, "Performance of RF sputtered V2O5 interface layer in p-type CdTe/Ag Schottky diode." Optical Materials, vol. 126, pp. 112176, 2022.
  • [20] N. AlAhmadi, "Metal oxide semiconductor-based Schottky diodes: a review of recent advances," Materials Research Express, vol. 7, p. 032001, 2020.
  • [21] D. Aldemir, A. Kökce, and A. Özdemir, "The comparison of the methods used for determining of Schottky diode parameters in a wide temperature range," pp. 1-1, 2017.
  • [22] E. H. Rhoderick, and R. H. Williams, "Metal-Semiconductor Contacts.", Second Edition, Clarendon Press, Oxford, 1988.
  • [23] S. K. Cheung and N.W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Lett., 1986.
  • [24] H. A. Bethe and M. I. o. T. R. Laboratory, Theory of the Boundary Layer of Crystal Rectifiers. Radiation Laboratory, Massachusetts Institute of Technology, 1942.
  • [25] S. B. Ocak, A. B. Selçuk, G. Aras and E. Orhan, "Electrical analysis of Al/ZnO/p-Si, Al/PMMA/p-Si and Al/PMMA/ZnO/p-Si structures: comparison study.", Materials Science in Semiconductor Processing, vol. 38, pp. 249-256, 2015.
  • [26] E. Orhan et al., "Effect of Gadolinium on Electrical Properties of Polyethyleneimine Functionalized and Nitrogen-Doped Graphene Quantum Dot Nanocomposite Based Diode," Advanced Electronic Materials, vol. 9, no. 8, pp. 2300261, 2023.
  • [27] A. K. Bilgili, T. Güzel, and M. Özer, "Current-voltage characteristics of Ag/TiO2/n-InP/Au Schottky barrier diodes," Journal of Applied Physics, vol. 125, no. 3, 2019.
  • [28] M. Ravinandan, P. K. Rao, and V. R. Reddy, “Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n-type GaN in a wide temperature range.” Semiconductor Science and Technology, vol. 24, no.3, 2009.
  • [29] E. Elgazzar, A. D. E. M. Tataroğlu, A. A. Al-Ghamdi, Y. Al-Turki, W. A. Farooq, F. El-Tantawy, and F. Yakuphanoglu, “Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements.” Applied Physics A, vol. 122, pp. 1-9, 2016.
  • [30] A. Ahaitouf, H. Srour, S. O. S. Hamady, N. Fressengeas, A. Ougazzaden, and J. P. Salvestrini, “Interface state effects in GaN Schottky diodes.” Thin Solid Films, vol. 522, pp. 345-351, 2012.
  • [31] S. Asmontas, M. Anbinderis, J. Gradauskas, R. Juskenas, K. Leinartas, A. Lucun, A. Selskis, L. Staisiunas, S. Stanionyte, A. Suziedelis, A. Silenas, E. Sirmulis, “Low resistance TiO2/p-Si heterojunction for tandem solar cells”, Materials, vol. 13, p. 2857, 2020.
  • [32] S. Aksoy and Y. Caglar, “Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode”, Journal of Alloys and Compounds, vol. 613, pp. 330-337, 2014.
  • [33] İ. H. Taşdemir, Ö. Vural and İ. Dökme, “Electrical characteristics of p-Si/TiO2/Al and p-Si/TiO2-Zr/Al Schottky devices”, Philosophical Magazine, vol. 96(16), pp. 1684-1693, 2016.
  • [34] A.A. Hendi and F. Yakuphanoglu, “Graphene doped TiO2/p-silicon heterojunction photodiode”, J. Alloys Compd., vol. 665, pp. 418–427, 2016.
  • [35] A. Dewasi and A. Mitra, “Effect of variation of thickness of TiO2 on the photovoltaic performance of n-TiO2/p-Si heterostructure”, J. Mater. Sci. Mater. Electron., 28, 18075–18084, 2017.
  • [36] S. Ruzgar, “Enhancement of the electrical performance of TiO2/p-Si heterojunction diode by Gadolinium doping”, Appl. Phys. A, vol. 126, pp. 770, 2020.
  • [37] O. Pakma, N. Serin, T. Serin, S. Altindal, “The influence of series resistance and interface states on intersecting behavior of I-V characteristics of Al/TiO2/p-Si (MIS) structures at low temperatures.”, Semiconductor science and technology, vol. 23(10), p. 105014, 2008.
  • [38] M. Koca, M. Yilmaz, D. Ekinci and S. Aydogan, “Light sensitive properties and temperature-dependent electrical performance of n-TiO2/p-Si anisotype heterojunction electrochemically formed TiO2 on p-Si”, J. Electron. Mater., vol. 50(9), pp. 5184-5195, 2021.
Year 2024, Volume: 13 Issue: 4, 905 - 915, 31.12.2024
https://doi.org/10.17798/bitlisfen.1459003

Abstract

References

  • [1] M. A. Mastro, "Power MOSFETs and diodes," Gallium Oxide, Elsevier, pp. 401-418, 2019.
  • [2] E. F. Krimmel, R. Hezel, U. Nohl, and R. Bohrer, "Schottky Diodes" Si Silicon: Silicon Nitride in Microelectronics and Solar Cells, Heidelberg: Springer Berlin Heidelberg, pp. 204-205,1991.
  • [3] D. Sadek, A. Zekry, H. Shawkey, and S. Kayed, "10 GHz Compact Shunt-Diode Rectifier Circuit Using Thin Film Ag/AZO Schottky Barrier Diode for Energy Harvesting Applications," In International Conference on Human-Computer Interaction, Cham: Springer International Publishing, pp. 436-445, 2022.
  • [4] C. Xu, P. Yu, and Y. Jiang, "A macro model of RF Schottky diode in 22-nm CMOS and its application," Solid-State Electronics, vol. 154, pp. 7-11, 2019.
  • [5] N. Daghestani et al., "Room temperature ultrafast InGaAs Schottky diode based detectors for terahertz spectroscopy," Infrared Physics & Technology, vol. 99, pp. 240-247, 2019.
  • [6] M. Tilli and A. Haapalinna, "Chapter 1 - Properties of Silicon," in Handbook of Silicon Based MEMS Materials and Technologies (Second Edition), M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos Eds. Boston: William Andrew Publishing, pp. 3-17, 2015.
  • [7] Ö. Güllü, T. Kilicoglu, and A. Türüt, "Electronic properties of the metal/organic interlayer/inorganic semiconductor sandwich device," Journal of Physics and Chemistry of Solids, vol. 71, no. 3, pp. 351-356, 2010.
  • [8] Ö. Güllü and A. Turut, "Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures," Journal of Applied Physics, vol. 106, pp. 103717-103717, 2009.
  • [9] İ. Dökme, Ş. Altındal, T. Tunç, and İ. Uslu, "Temperature dependent electrical and dielectric properties of Au/polyvinyl alcohol (Ni, Zn-doped)/n-Si Schottky diodes," Microelectronics Reliability, vol. 50, no. 1, pp. 39-44, 2010.
  • [10] S. Sonmezoglu, S. Şenkul, R. Taş, G. Çankaya, and M. Can, "Electrical and interface state density properties of polyaniline–poly-3-methyl thiophene blend/p-Si Schottky barrier diode," Solid State Sciences, vol. 12, pp. 706-711, 2010.
  • [11] H. K. Henisch, "Metal-semiconductor Schottky barrier junctions and their applications," Proceedings of the IEEE, vol. 74, no. 6, pp. 894-894, 1986.
  • [12] S. M. Sze and K. K. Ng, Physics Of Semiconductor Devices, 3RD ED. Wiley India Pvt. Limited, 2008.
  • [13] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, 2002.
  • [14] H. Bentarzi, Transport in Metal-Oxide-Semiconductor Structures : Mobile Ions Effects on the Oxide Properties. 2011.
  • [15] M. Noman, M. A. Ashraf, and A. Ali, "Synthesis and applications of nano-TiO2: a review," Environmental Science and Pollution Research, vol. 26, 2019.
  • [16] F. Wang and J. Wu, "Chapter 8 - Magnetron sputtering," in Modern Ion Plating Technology, F. Wang and J. Wu Eds.: Elsevier, 2023, pp. 189-228.
  • [17] G. M. Ali, "Performance analysis of planar Schottky photodiode based on nanostructured ZnO thin film grown by three different techniques," Journal of Alloys and Compounds, vol. 831, pp. 154859, 2020.
  • [18] H. Ferhati, F. Djeffal, K. Kacha, A. Bendjerad, and A. Benhaya, "Influence of TCO intermediate thin-layers on the electrical and thermal properties of metal/TCO/p-Si Schottky structure fabricated via RF magnetron sputtering," Physica E: Low-dimensional Systems and Nanostructures, vol. 106, pp. 25-30, 2019.
  • [19] R. Raj, H. Gupta, and L. P. Purohit, "Performance of RF sputtered V2O5 interface layer in p-type CdTe/Ag Schottky diode." Optical Materials, vol. 126, pp. 112176, 2022.
  • [20] N. AlAhmadi, "Metal oxide semiconductor-based Schottky diodes: a review of recent advances," Materials Research Express, vol. 7, p. 032001, 2020.
  • [21] D. Aldemir, A. Kökce, and A. Özdemir, "The comparison of the methods used for determining of Schottky diode parameters in a wide temperature range," pp. 1-1, 2017.
  • [22] E. H. Rhoderick, and R. H. Williams, "Metal-Semiconductor Contacts.", Second Edition, Clarendon Press, Oxford, 1988.
  • [23] S. K. Cheung and N.W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics”, Appl. Phys. Lett., 1986.
  • [24] H. A. Bethe and M. I. o. T. R. Laboratory, Theory of the Boundary Layer of Crystal Rectifiers. Radiation Laboratory, Massachusetts Institute of Technology, 1942.
  • [25] S. B. Ocak, A. B. Selçuk, G. Aras and E. Orhan, "Electrical analysis of Al/ZnO/p-Si, Al/PMMA/p-Si and Al/PMMA/ZnO/p-Si structures: comparison study.", Materials Science in Semiconductor Processing, vol. 38, pp. 249-256, 2015.
  • [26] E. Orhan et al., "Effect of Gadolinium on Electrical Properties of Polyethyleneimine Functionalized and Nitrogen-Doped Graphene Quantum Dot Nanocomposite Based Diode," Advanced Electronic Materials, vol. 9, no. 8, pp. 2300261, 2023.
  • [27] A. K. Bilgili, T. Güzel, and M. Özer, "Current-voltage characteristics of Ag/TiO2/n-InP/Au Schottky barrier diodes," Journal of Applied Physics, vol. 125, no. 3, 2019.
  • [28] M. Ravinandan, P. K. Rao, and V. R. Reddy, “Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n-type GaN in a wide temperature range.” Semiconductor Science and Technology, vol. 24, no.3, 2009.
  • [29] E. Elgazzar, A. D. E. M. Tataroğlu, A. A. Al-Ghamdi, Y. Al-Turki, W. A. Farooq, F. El-Tantawy, and F. Yakuphanoglu, “Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements.” Applied Physics A, vol. 122, pp. 1-9, 2016.
  • [30] A. Ahaitouf, H. Srour, S. O. S. Hamady, N. Fressengeas, A. Ougazzaden, and J. P. Salvestrini, “Interface state effects in GaN Schottky diodes.” Thin Solid Films, vol. 522, pp. 345-351, 2012.
  • [31] S. Asmontas, M. Anbinderis, J. Gradauskas, R. Juskenas, K. Leinartas, A. Lucun, A. Selskis, L. Staisiunas, S. Stanionyte, A. Suziedelis, A. Silenas, E. Sirmulis, “Low resistance TiO2/p-Si heterojunction for tandem solar cells”, Materials, vol. 13, p. 2857, 2020.
  • [32] S. Aksoy and Y. Caglar, “Structural transformations of TiO2 films with deposition temperature and electrical properties of nanostructure n-TiO2/p-Si heterojunction diode”, Journal of Alloys and Compounds, vol. 613, pp. 330-337, 2014.
  • [33] İ. H. Taşdemir, Ö. Vural and İ. Dökme, “Electrical characteristics of p-Si/TiO2/Al and p-Si/TiO2-Zr/Al Schottky devices”, Philosophical Magazine, vol. 96(16), pp. 1684-1693, 2016.
  • [34] A.A. Hendi and F. Yakuphanoglu, “Graphene doped TiO2/p-silicon heterojunction photodiode”, J. Alloys Compd., vol. 665, pp. 418–427, 2016.
  • [35] A. Dewasi and A. Mitra, “Effect of variation of thickness of TiO2 on the photovoltaic performance of n-TiO2/p-Si heterostructure”, J. Mater. Sci. Mater. Electron., 28, 18075–18084, 2017.
  • [36] S. Ruzgar, “Enhancement of the electrical performance of TiO2/p-Si heterojunction diode by Gadolinium doping”, Appl. Phys. A, vol. 126, pp. 770, 2020.
  • [37] O. Pakma, N. Serin, T. Serin, S. Altindal, “The influence of series resistance and interface states on intersecting behavior of I-V characteristics of Al/TiO2/p-Si (MIS) structures at low temperatures.”, Semiconductor science and technology, vol. 23(10), p. 105014, 2008.
  • [38] M. Koca, M. Yilmaz, D. Ekinci and S. Aydogan, “Light sensitive properties and temperature-dependent electrical performance of n-TiO2/p-Si anisotype heterojunction electrochemically formed TiO2 on p-Si”, J. Electron. Mater., vol. 50(9), pp. 5184-5195, 2021.
There are 38 citations in total.

Details

Primary Language English
Subjects Material Physics, Nanofabrication, Growth and Self Assembly, Nanomaterials, Nanotechnology (Other)
Journal Section Araştırma Makalesi
Authors

Barış Polat 0000-0003-3314-2091

Elanur Dikicioğlu 0000-0002-8984-1054

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date March 26, 2024
Acceptance Date October 25, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

IEEE B. Polat and E. Dikicioğlu, “Analysis of Current-Voltage Properties of Schottky Diode with TiO2 Interlayer Prepared by RF Magnetron Sputtering”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 905–915, 2024, doi: 10.17798/bitlisfen.1459003.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS