Development of a Functionalized SiO2 Supported Ni Nanoparticles Based Non-Enzymatic Amperometric Dopamine Sensor
Year 2024,
Volume: 13 Issue: 4, 999 - 1012, 31.12.2024
Yunus Emre Yildirim
Muhammet Güler
Abstract
In the present work, a novel electrochemical dopamine (DA) sensor depending on Nickel (Ni) nanoparticles decorated (3-aminopropyl)triethoxysilane (APTES) modifed silica (SiO2) was fabricated. Hence, Ni@SiO2-APTES was synthesized by the conventional wet-impregnation method. The structure of the compozite was evaluated using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and X-ray diffraction (XRD). The synthesized Ni@SiO2-APTES was loaded on glassy carbon working electrode (GCE). Also, Nafion (Nf) was drop-casted on Ni@SiO2-APTES/GCE to stabilize the electrode. The fabricated Nf/Ni@SiO2-APTES/GCE working electrode was electrochemicaly evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry. CV and EIS results indicated that Ni nanoparticles increased both the conductivity and sensitivity of the working electrode. The linear detection range for DA was found to be 0.2 – 252 µM with limit of detection (LOD) was 0.07 µM depending on S/N of 3. The sensitivity was found to be 578.26 µA mM-1 cm-2 depending on the active surface area of the modified working electrode. The sensor exhibited excellent selectivity in the electrolyte solution including ascorbic acid, glucose, fructose, sucrose, mannose, uric acid, and phenylalanine. The sensor had satisfactory repeatability and reproduciblity. It was observed that the sensor showed an electrocatalytic response of 95.33% after 28 days. According to this result, it was concluded that the sensor was extremely stable within the studied time period. The applicability of Nf/Ni@SiO2-APTES/GCE was tested using dopamine HCl injection (200 mg/5 mL).
Ethical Statement
The study is complied with research and publication ethics.
Supporting Institution
Van Yüzüncü Yıl University, Coordination of Scientific Research Projects
Project Number
FYL-2021-9370
Thanks
This study was supported by Van Yüzüncü Yıl University, Scientific Research Projects Department (project number FYL-2021-9370).
References
- [1] S. Park, S. Park, R. A. Jeong, H. Boo, J. Park, H. C. Kim, T. D. Chung, “Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt,” Biosens. Bioelectron., vol. 31, no. 1, pp. 284-291, January 2012.
- [2] T. V. Maia, V. A. Conceição, “Dopaminergic disturbances in Tourette syndrome: an integrative account,” Biol. psychiatry, vol. 84, no. 5, pp. 332-344, September 2018.
- [3] O. D. Howes, R. McCutcheon, M. J. Owen, R. M. Murray, "The role of genes, stress, and dopamine in the development of schizophrenia,” Biol. psychiatry, vol. 81, no. 1, pp. 9-20, January 2017.
- [4] B. K. Madras, G. M. Miller, A. J. Fischman, “The dopamine transporter and attention-deficit/hyperactivity disorder,” Biol. psychiatry, vol. 57, no. 11, pp. 1397-1409, October 2005.
- [5] M. A. Peters, A. M. Walenkamp, I. P. Kema, C. Meijer, E. G. de Vries, S. F. Oosting, “Dopamine and serotonin regulate tumor behavior by affecting angiogenesis,” Drug Resist. Updat., vol. 17, no. 4-6, pp. 96-104, December 2014.
- [6] J. A. Obeso, M. C. Rodríguez-Oroz, M. Rodríguez, J. Arbizu, J. M. Giménez-Amaya, “The basal ganglia and disorders of movement: pathophysiological mechanisms,” Physiol., vol. 17, pp. 51-55, April 2002.
- [7] M. Groves, J. P. Vonsattel, P. Mazzoni, K. Marder, “Huntington's disease,” Science, vol. 2003, pp. dn3, October 2003.
- [8] M. Amiri, S. Dadfarnia, A. M. H. Shabani, S. Sadjadi, “Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles,” J. Pharm. Biomed. Anal., vol. 172, pp. 223-229, August 2019.
- [9] X. Zhang, J. Zheng, “Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing,” Sens. Actuators B: Chem., vol. 290, pp. 648-655, July 2019.
- [10] T. W. Chen, S. Chinnapaiyan, S. M. Chen, M. A. Ali, M. S. Elshikh, A. H. Mahmoud, “A feasible sonochemical approach to synthesize CuO@CeO2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter,” Ultrason. Sonochem., vol. 63, pp. 104903, May 2020.
- [11] M. S. Wilson, “Electrochemical immunosensors for the simultaneous detection of two tumor markers,” Anal. Chem., vol. 77, no. 5, pp. 1496-1502, February 2005.
- [12] P. D'Orazio, “Biosensors in clinical chemistry,” Clin. Chim. Acta, Vol. 334, no. 1-2, pp. 41-69, August 2003.
- [13] H. Huang, Y. Chen, Z. Chen, J. Chen, Y. Hu, J. J. Zhu, “Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol,” J. Hazard. Mater., vol. 416, pp. 125895, August 2021.
- [14] H. V. Kiranakumar, R. Thejas, C. S. Naveen, M. I. Khan, G. D. Prasanna, S. Reddy, M. Oreijah, K. Guedri, O. T. Bafakeeh, M. Jamee, “A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites,” Biomass Convers. Biorefin., pp. 1-11, August 2022.
- [15] M. Zhang, Y. Yang, W. Guo, “Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles,” Food Chem., vol. 430, pp. 137004, January 2024.
- [16] M. Kumar, B. K. Swamy, S. Reddy, W. Zhao, S. Chetana, V. G. Kumar, “ZnO/functionalized MWCNT and Ag/functionalized MWCNT modified carbon paste electrodes for the determination of dopamine, paracetamol and folic acid,” J. Electroanal. Chem., vol. 835, pp. 96-105, February 2019.
- [17] L. Bayram, M. Guler, “An ultra-sensitive non-enzymatic hydrogen peroxide sensor based on SiO2-APTES supported Au nanoparticles modified glassy carbon electrode,” Prog. Nat. Sci.: Mater. Int., vol. 29, no. 4, pp. 390-396, August 2019.
- [18] J. Xu, J. Zhang, H. Peng, X. Xu, W. Liu, Z. Wang, N. Zhang, X. Wang, “Ag supported on meso-structured SiO2 with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts,” Microporous Mesoporous Mater., vol. 242, pp. 90-98, April 2017.
- [19] D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, “A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles,” J. Am. Chem. Soc., vol. 129, no. 25, pp. 7859-7866, June 2007.
- [20] M. Celebi, M. Yurderi, A. Bulut, M. Kaya, M. Zahmakiran, “Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction,” Appl. Catal. B: Environ., vol. 180, pp. 53-64, January 2016.
- [21] I. B. Bwatanglang, S. T. Magili, I. Kaigamma, “Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks,” PeerJ Physical Chem., vol. 3, pp. e17, March 2021.
- [22] C. Pereira, J. F. Silva, A. M. Pereira, J. P. Araujo, G. Blanco, J. M. Pintado, C. Freire, “[VO(acac)2] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol,” Catal. Sci. Techno., vol. 1, no. 5, pp. 784-793, May 2011.
- [23] Y. He, M. Qiao, H. Hu, Y. Pei, H. Li, J. Deng, K. Fan, “Preparation of amorphous Ni–B alloy: the effect of feeding order, precursor salt, pH and adding rate,” Mater. Lett., vol. 56, no. 6, pp. 952-957, November 2002.
- [24] K. Chou, S. Chang, K. Huang, “Study on the characteristics of nanosized nickel particles using sodium borohydride to promote conversion,” Adv. Techno. Mater. Mater. Process. J., vol. 8, no. 2, pp. 172, January 2007.
- [25] Y. Li, Y. Gu, B. Zheng, L. Luo, C. Li, X. Yan, Z. Tingting, L. Nannan, Z. Zhang, “A novel electrochemical biomimetic sensor based on poly (Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine,” Talanta, vol. pp. 162, 80-89, January 2017.
- [26] H. S. Jang, D. Kim, C. Lee, B. Yan, X. Qin, Y. Piao, “Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine,” Inorg. Chem. Commun., vol. 105, pp. 174-181, July 2019.
- [27] C. Rajkumar, B. Thirumalraj, S. M. Chen, H. A. Chen, “A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine,” J. Colloid. Interface Sci., vol. 487, pp. 149-155, February 2017.
- [28] H. Yang, D. Liu, X. Zhao, J. H. Yang, H. Chang, R. Xing, S. Liu, “AuPd bimetallic nanoparticle-supported carbon nanotubes for selective detection of dopamine in the presence of ascorbic acid,” Anal. methods, vol. 9, no. 21, 3191-3199, May 2017.
- [29] S. Hu, Q. Huang, Y. Lin, C. Wei, H. Zhang, W. Zhang, Z. Guo, X. Bao, J. Shi, A. Hao, “Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine,” Electrochim. Acta, vol. 130, pp. 805-809, June 2014.
- [30] E. J. J. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” J. Electroanal. Chem. Interfacial Electrochem., vol. 101, no. 1, pp. 19-28, July 1979.
- [31] Q. J. Gong, H. X. Han, Y. D. Wang, C. Z. Yao, H. Y. Yang, J. L. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Mater., vol. 35, no. 1, pp. 34-41, February 2020.
- [32] R. Nehru, S. M. Chen, “Carbon supported olivine type phosphate framework: a promising electrocatalyst for sensitive detection of dopamine,” RSC adv., vol. 8, pp. 27775-27785, August 2018.
- [33] A. García-Miranda Ferrari, C. W. Foster, P. J. Kelly, D. A. Brownson, C. E. Banks, “Determination of the electrochemical area of screen-printed electrochemical sensing platforms,” Biosensors, vol. 8, no. 2, 53. (2018).
- [34] Q. J. Gong, H. X. Han, Y. D. Wang, C. Z. Yao, H. Y. Yang, J. L. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Mater., vol. 35, pp. 34-41, February 2020.
- [35] Y. Zheng, Z. Huang, C. Zhao, S. Weng, W. Zheng, X. Lin, “A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid,” Microchim. Acta, vol. 180, pp. 537-544, February 2013.
- [36] N. S. Anuar, W. J. Basirun, M. Shalauddin, S. Akhter, “A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode,” RSC adv., vol. 10, pp. 17336-17344, May 2020.
- [37] Y. Y. Li, P. Kang, S. Q. Wang, Z. G. Liu, Y. X. Li, Z. Guo, “Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum,” Sens. Actuators B: Chem., vol. 327, pp. 128878, January 2021.
- [38] C. Xue, Q. Han, Y. Wang, J. Wu, T. Wen, R. Wang, J. Hong, X. Zhou, H. Jiang, “Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers,” Biosens. Bioelectron., vol. 49, pp. 199-203, November 2013.
Year 2024,
Volume: 13 Issue: 4, 999 - 1012, 31.12.2024
Yunus Emre Yildirim
Muhammet Güler
Project Number
FYL-2021-9370
References
- [1] S. Park, S. Park, R. A. Jeong, H. Boo, J. Park, H. C. Kim, T. D. Chung, “Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt,” Biosens. Bioelectron., vol. 31, no. 1, pp. 284-291, January 2012.
- [2] T. V. Maia, V. A. Conceição, “Dopaminergic disturbances in Tourette syndrome: an integrative account,” Biol. psychiatry, vol. 84, no. 5, pp. 332-344, September 2018.
- [3] O. D. Howes, R. McCutcheon, M. J. Owen, R. M. Murray, "The role of genes, stress, and dopamine in the development of schizophrenia,” Biol. psychiatry, vol. 81, no. 1, pp. 9-20, January 2017.
- [4] B. K. Madras, G. M. Miller, A. J. Fischman, “The dopamine transporter and attention-deficit/hyperactivity disorder,” Biol. psychiatry, vol. 57, no. 11, pp. 1397-1409, October 2005.
- [5] M. A. Peters, A. M. Walenkamp, I. P. Kema, C. Meijer, E. G. de Vries, S. F. Oosting, “Dopamine and serotonin regulate tumor behavior by affecting angiogenesis,” Drug Resist. Updat., vol. 17, no. 4-6, pp. 96-104, December 2014.
- [6] J. A. Obeso, M. C. Rodríguez-Oroz, M. Rodríguez, J. Arbizu, J. M. Giménez-Amaya, “The basal ganglia and disorders of movement: pathophysiological mechanisms,” Physiol., vol. 17, pp. 51-55, April 2002.
- [7] M. Groves, J. P. Vonsattel, P. Mazzoni, K. Marder, “Huntington's disease,” Science, vol. 2003, pp. dn3, October 2003.
- [8] M. Amiri, S. Dadfarnia, A. M. H. Shabani, S. Sadjadi, “Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles,” J. Pharm. Biomed. Anal., vol. 172, pp. 223-229, August 2019.
- [9] X. Zhang, J. Zheng, “Hollow carbon sphere supported Ag nanoparticles for promoting electrocatalytic performance of dopamine sensing,” Sens. Actuators B: Chem., vol. 290, pp. 648-655, July 2019.
- [10] T. W. Chen, S. Chinnapaiyan, S. M. Chen, M. A. Ali, M. S. Elshikh, A. H. Mahmoud, “A feasible sonochemical approach to synthesize CuO@CeO2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter,” Ultrason. Sonochem., vol. 63, pp. 104903, May 2020.
- [11] M. S. Wilson, “Electrochemical immunosensors for the simultaneous detection of two tumor markers,” Anal. Chem., vol. 77, no. 5, pp. 1496-1502, February 2005.
- [12] P. D'Orazio, “Biosensors in clinical chemistry,” Clin. Chim. Acta, Vol. 334, no. 1-2, pp. 41-69, August 2003.
- [13] H. Huang, Y. Chen, Z. Chen, J. Chen, Y. Hu, J. J. Zhu, “Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol,” J. Hazard. Mater., vol. 416, pp. 125895, August 2021.
- [14] H. V. Kiranakumar, R. Thejas, C. S. Naveen, M. I. Khan, G. D. Prasanna, S. Reddy, M. Oreijah, K. Guedri, O. T. Bafakeeh, M. Jamee, “A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites,” Biomass Convers. Biorefin., pp. 1-11, August 2022.
- [15] M. Zhang, Y. Yang, W. Guo, “Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles,” Food Chem., vol. 430, pp. 137004, January 2024.
- [16] M. Kumar, B. K. Swamy, S. Reddy, W. Zhao, S. Chetana, V. G. Kumar, “ZnO/functionalized MWCNT and Ag/functionalized MWCNT modified carbon paste electrodes for the determination of dopamine, paracetamol and folic acid,” J. Electroanal. Chem., vol. 835, pp. 96-105, February 2019.
- [17] L. Bayram, M. Guler, “An ultra-sensitive non-enzymatic hydrogen peroxide sensor based on SiO2-APTES supported Au nanoparticles modified glassy carbon electrode,” Prog. Nat. Sci.: Mater. Int., vol. 29, no. 4, pp. 390-396, August 2019.
- [18] J. Xu, J. Zhang, H. Peng, X. Xu, W. Liu, Z. Wang, N. Zhang, X. Wang, “Ag supported on meso-structured SiO2 with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts,” Microporous Mesoporous Mater., vol. 242, pp. 90-98, April 2017.
- [19] D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, D. Wang, “A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles,” J. Am. Chem. Soc., vol. 129, no. 25, pp. 7859-7866, June 2007.
- [20] M. Celebi, M. Yurderi, A. Bulut, M. Kaya, M. Zahmakiran, “Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction,” Appl. Catal. B: Environ., vol. 180, pp. 53-64, January 2016.
- [21] I. B. Bwatanglang, S. T. Magili, I. Kaigamma, “Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks,” PeerJ Physical Chem., vol. 3, pp. e17, March 2021.
- [22] C. Pereira, J. F. Silva, A. M. Pereira, J. P. Araujo, G. Blanco, J. M. Pintado, C. Freire, “[VO(acac)2] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol,” Catal. Sci. Techno., vol. 1, no. 5, pp. 784-793, May 2011.
- [23] Y. He, M. Qiao, H. Hu, Y. Pei, H. Li, J. Deng, K. Fan, “Preparation of amorphous Ni–B alloy: the effect of feeding order, precursor salt, pH and adding rate,” Mater. Lett., vol. 56, no. 6, pp. 952-957, November 2002.
- [24] K. Chou, S. Chang, K. Huang, “Study on the characteristics of nanosized nickel particles using sodium borohydride to promote conversion,” Adv. Techno. Mater. Mater. Process. J., vol. 8, no. 2, pp. 172, January 2007.
- [25] Y. Li, Y. Gu, B. Zheng, L. Luo, C. Li, X. Yan, Z. Tingting, L. Nannan, Z. Zhang, “A novel electrochemical biomimetic sensor based on poly (Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine,” Talanta, vol. pp. 162, 80-89, January 2017.
- [26] H. S. Jang, D. Kim, C. Lee, B. Yan, X. Qin, Y. Piao, “Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine,” Inorg. Chem. Commun., vol. 105, pp. 174-181, July 2019.
- [27] C. Rajkumar, B. Thirumalraj, S. M. Chen, H. A. Chen, “A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine,” J. Colloid. Interface Sci., vol. 487, pp. 149-155, February 2017.
- [28] H. Yang, D. Liu, X. Zhao, J. H. Yang, H. Chang, R. Xing, S. Liu, “AuPd bimetallic nanoparticle-supported carbon nanotubes for selective detection of dopamine in the presence of ascorbic acid,” Anal. methods, vol. 9, no. 21, 3191-3199, May 2017.
- [29] S. Hu, Q. Huang, Y. Lin, C. Wei, H. Zhang, W. Zhang, Z. Guo, X. Bao, J. Shi, A. Hao, “Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine,” Electrochim. Acta, vol. 130, pp. 805-809, June 2014.
- [30] E. J. J. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” J. Electroanal. Chem. Interfacial Electrochem., vol. 101, no. 1, pp. 19-28, July 1979.
- [31] Q. J. Gong, H. X. Han, Y. D. Wang, C. Z. Yao, H. Y. Yang, J. L. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Mater., vol. 35, no. 1, pp. 34-41, February 2020.
- [32] R. Nehru, S. M. Chen, “Carbon supported olivine type phosphate framework: a promising electrocatalyst for sensitive detection of dopamine,” RSC adv., vol. 8, pp. 27775-27785, August 2018.
- [33] A. García-Miranda Ferrari, C. W. Foster, P. J. Kelly, D. A. Brownson, C. E. Banks, “Determination of the electrochemical area of screen-printed electrochemical sensing platforms,” Biosensors, vol. 8, no. 2, 53. (2018).
- [34] Q. J. Gong, H. X. Han, Y. D. Wang, C. Z. Yao, H. Y. Yang, J. L. Qiao, “An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite,” New Carbon Mater., vol. 35, pp. 34-41, February 2020.
- [35] Y. Zheng, Z. Huang, C. Zhao, S. Weng, W. Zheng, X. Lin, “A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid,” Microchim. Acta, vol. 180, pp. 537-544, February 2013.
- [36] N. S. Anuar, W. J. Basirun, M. Shalauddin, S. Akhter, “A dopamine electrochemical sensor based on a platinum–silver graphene nanocomposite modified electrode,” RSC adv., vol. 10, pp. 17336-17344, May 2020.
- [37] Y. Y. Li, P. Kang, S. Q. Wang, Z. G. Liu, Y. X. Li, Z. Guo, “Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum,” Sens. Actuators B: Chem., vol. 327, pp. 128878, January 2021.
- [38] C. Xue, Q. Han, Y. Wang, J. Wu, T. Wen, R. Wang, J. Hong, X. Zhou, H. Jiang, “Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers,” Biosens. Bioelectron., vol. 49, pp. 199-203, November 2013.