Research Article
BibTex RIS Cite

Exploring Radiation Shielding Properties of Lanthanide Elements

Year 2024, Volume: 13 Issue: 4, 1314 - 1324, 31.12.2024
https://doi.org/10.17798/bitlisfen.1558208

Abstract

In this work, the radiation shielding properties of Lanthanide elements were studied using the EpiXS program and GATE simulation, which agreed well with each other, based on some key parameters such as MAC, LAC, HVL, MFP, EABF, and EBF. It was observed that at lower energies of gamma-rays, the values of MAC and LAC are maximum, which decrease with the increase in energy due to reduced photoelectric interactions. Photoelectric absorption edges couple with peaks in attenuation values; peaks for elements of the lower atomic number, La, Ce, Pr, and Nd, appear as two while the peaks for elements of higher atomic number are three due to the additional absorptions by L-shell sub- levels or M-shell. These peaks take place when the energy of photons meets the energy level of electron binding. While Lutetium has the highest and Europium has the lowest LAC values, Lutetium also has the lowest HVL and MFP values; thus, it has the best radiation shielding properties. The EABF and EBF reach their maximum in the medium energy range and then decrease. Lutetium has the lowest photon buildup, and Lanthanum has the highest EABF and EBF values for all the studied elements at all penetration depths.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] F. Wall, "Rare earth elements," in Encyclopedia of Geology, 2nd ed., D. Alderton and S. Elias, Eds., Elsevier, pp. 680–693, 2021. [Online]. https://doi.org/10.1016/B978-0-08-102908-4.00101-6.
  • [2] J. A. Giacalone, "The market for the 'not-so-rare' rare earth elements," J. Int. Energy Policy, vol. 1, no. 1, pp. 11–18, 2012. [Online]. Available: https://doi.org/10.19030/jiep.v1i1.7013.
  • [3] S. B. Castor and J. B. Hedrick, "Rare earth elements," in Materials Science and Chemistry, G. E. Totten, Ed., CRC Press, 2006. [Online]. Available: https://doi.org/10.1002/0470862106.id683.
  • [4] P. F. Lou, X. B. Teng, Q. X. Jia, Y. Q. Wang, and L. Q. Zhang, "Preparation and structure of rare earth/thermoplastic polyurethane fiber for X-ray shielding," J. Appl. Polym. Sci., vol. 136, no. 17, p. 47435, 2018.
  • [5] T. Cui, S. Duan, R. Chen, R. Wang, and Q. Jia, "Monte Carlo simulation study of rare earth/polypropylene composite shielding 120 KV medical X-ray," J. Phys.: Conf. Ser., vol. 2539, no. 1, p. 012070, Jul. 2023.
  • [6] Y. Liu, X. Li, Y. Yin, Z. Li, H. Yao, Z. Li, and H. Li, "Design and computational validation of γ-ray shielding effectiveness in heavy metal/rare earth oxide–natural rubber composites," Polymers, vol. 16, no. 15, p. 2130, 2024.
  • [7] F.-H. Mai, Q.-P. Zhang, R. Wang, L.-C. Meng, Y. Zhang, J.-L. Li, P.-Q. Liu, Y.-T. Li, and Y.-L. Zhou, "Polymer fibers highly filled with styrene maleic anhydride-modified PbWO4 for improved wear comfort of γ-ray-shielding articles," ACS Appl. Polym. Mater., vol. 4, pp. 6394–6402, 2022.
  • [8] M. Şahiner, Y. Z. Akgök, M. Arslan, and M. H. Ergin, "Dünyada ve Türkiye’de nadir toprak elementleri (NTE)," Maden Tetkik ve Arama Genel Müdürlüğü, Fizibilite Etütleri Daire Başkanlığı, 2017.
  • [9] Y. S. Rammah, A. A. Ali, R. El-Mallawany, and F. I. El-Agawany, "Fabrication, physical, optical characteristics and gamma-ray competence of novel bismuth-borate glasses doped with Yb₂O₃ rare earth," Physica B: Condens. Matter, vol. 583, p. 412055, 2020.
  • [10] Y. S. Rammah, F. I. El-Agawany, K. A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, "FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses," J. Mater. Sci.: Mater. Electron., vol. 31, no. 12, pp. 9099–9113, 2020.
  • [11] H. Jing, L. Geng, S. Qiu, H. Zou, M. Liang, and D. Deng, "Research progress of rare earth composite shielding materials," J. Rare Earths, vol. 41, no. 1, pp. 32–41, 2023.
  • [12] P. Fernandez-Arias, D. Vergara, and J. A. Orosa, "A global review of PWR nuclear power plants," Appl. Sci., vol. 10, no. 13, p. 4434, 2020.
  • [13] P. Wu, M. Liu, J. G. Deng, J. J. Fu, Z. H. Deng, and Y. Q. Song, "Research progress of neutron shielding material," Nucl. Chem. Mater., vol. 45, no. 9, pp. 4–8, 2017.
  • [14] A. A. Suresh, P. Vinothkumar, M. Mohapatra, M. Dhavamurthy, and P. Murugasen, "The effect of rare earth on the radiation shielding properties of transparent lead-free alumino-borophosphate glass system," Radiat. Phys. Chem., vol. 193, p. 109941, 2022.
  • [15] E. S. A. Waly, G. S. Al-Qous, and M. A. Bourham, "Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV," Radiat. Phys. Chem., vol. 150, pp. 120–124, 2018.
  • [16] G. Lakshminarayana et al., "Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications," J. Non-Cryst. Solids, vol. 471, pp. 222–237, May 2017.
  • [17] R. Florez, A. Loaiza, C. H. C. Giraldo, and H. A. Colorado, "Calcium silicate phosphate cement with samarium oxide additions for neutron shielding applications in the nuclear industry," Prog. Nucl. Energy, vol. 133, p. 103650, 2021.
  • [18] M. Ma, M. E. Thomas, P. McGuiggan, and J. B. Spicer, "Weak absorption and scattering losses from the visible to the near-infrared in single-crystal sapphire materials," Opt. Eng., vol. 59, no. 8, p. 87101, 2020.
  • [19] K. M. Mahmoud and Y. S. Rammah, "Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr, and Dy rare earth using MCNP-5 code," Physica B: Condens. Matter, vol. 577, p. 411756, 2020.
  • [20] P. Kaur, D. Singh, and T. Singh, "Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses," Radiat. Phys. Chem., vol. 144, pp. 336–342, 2018.
  • [21] W. F. Yang, Y. Liu, L. Yang, D. Li, and J. Li, "Research progress in shielding materials for nuclear radiation," Mater. Rev., vol. 21, no. 5, pp. 82–87, 2007.
  • [22] B. Gan, S. C. Liu, Z. He, F. C. Chen, H. X. Niu, J. C. Cheng et al., "Research progress of metal-based shielding materials for neutron and gamma rays," Acta Metall. Sin., vol. 7, pp. 68–75, 2021.
  • [23] S. Zhao, Z. P. Huo, G. Q. Zhong, H. Zhang, and L. Q. Hu, "Research progress of neutron and gamma-ray composite shielding materials," J. Funct. Mater., vol. 52, no. 3, pp. 3001–3010, 2021.
  • [24] G. Jagannath, A. G. Pramod, K. Keshavamurthy, B. N. Swetha, B. Bheemaiah, R. Eraiah, R. Rajaramakrishna, R. Ramesh, P. Prajwal, V. Hegde, S. C. Prashantha, and M. S. Alhuthali, "Nonlinear optical, optical limiting and radiation shielding features of Eu³⁺ activated borate glasses," Optik, vol. 232, p. 166563, 2021, doi: 10.1016/j.ijleo.2021.166563.
  • [25] O. I. Sallam, Y. S. Rammah, I. M. Nabil et al., "Enhanced optical and structural traits of irradiated lead borate glasses via Ce³⁺ and Dy³⁺ ions with studying radiation shielding performance," Sci. Rep., vol. 14, p. 24478, 2024, doi: 10.1038/s41598-024-73892-w.
  • [26] F. C. Hila, A. Asuncion-Astronomo, C. A. M. Dingle, J. F. M. Jecong, A. M. V. Javier-Hila, M. B. Z. Gili, C. V. Balderas, G. E. P. Lopez, N. R. D. Guillermo, and A. V. Amorsolo Jr., "EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8)," Radiat. Phys. Chem., vol. 182, p. 109331, 2021.
  • [27] PubChem, "Periodic Table," National Center for Biotechnology Information, [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/periodic-table/. [Accessed: Aug. 3, 2024].
  • [28] T. Şahmaran and N. Yavuzkanat, "Evaluation of gamma and neutron radiation shielding parameters of some glass materials by Monte Carlo and theoretical methods," Radiat. Eff. Defects Solids, vol. 179, no. 3–4, pp. 489–500, 2024.
  • [29] American National Standards Institute (ANSI), "Gamma-ray attenuation coefficient and buildup factors for engineering materials," ANS/ANSI-6.4.3, 1991.
  • [30] Y. Karabul, "Bazalt numunelerde EABF ve EBF parametrelerinin yeni bir metot ile tayini," M.S. thesis, İstanbul Univ., Inst. of Science, Istanbul, 2014, pp. 13–14.
  • [31] P. S. Singh, T. Singh, and P. Kaur, "Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents," Ann. Nucl. Energy, vol. 35, pp. 1093–1097, 2008.
  • [32] S. Bilici, A. Bilici, and F. Külahcı, "Comparison photon exposure and energy absorption buildup factors of CR-39 and Trivex optical lenses," Turk. J. Sci. Technol., vol. 17, no. 1, pp. 23–35, 2022.
  • [33] N. Yavuzkanat, "Fosfor-sandviç tipi dedektör sisteminin toplam gama verimi için modellenen Geant4 tabanlı GATE simülasyonu," ALKÜ Fen Bilimleri Dergisi, vol. 2, no. 3, pp. 150–162, 2020, doi: 10.46740/alku.804473.
  • [34] N. Nagaraj, H. C. Manjunatha, Y. S. Vidya, L. Seenappa, K. N. Sridhar, and P. S. Damodara Gupta, "Investigations on lanthanide polymers for radiation shielding purpose," Radiat. Phys. Chem., vol. 199, p. 110310, 2022, doi: 10.1016/j.radphyschem.2022.110310.
  • [35] A. Pyngrope, Study of Radiation Shielding Properties of Lanthanides, Solvent and Glass, 2023, ch. 4, pp. 26–38. ISBN: 978-620-6-76775-6.
Year 2024, Volume: 13 Issue: 4, 1314 - 1324, 31.12.2024
https://doi.org/10.17798/bitlisfen.1558208

Abstract

References

  • [1] F. Wall, "Rare earth elements," in Encyclopedia of Geology, 2nd ed., D. Alderton and S. Elias, Eds., Elsevier, pp. 680–693, 2021. [Online]. https://doi.org/10.1016/B978-0-08-102908-4.00101-6.
  • [2] J. A. Giacalone, "The market for the 'not-so-rare' rare earth elements," J. Int. Energy Policy, vol. 1, no. 1, pp. 11–18, 2012. [Online]. Available: https://doi.org/10.19030/jiep.v1i1.7013.
  • [3] S. B. Castor and J. B. Hedrick, "Rare earth elements," in Materials Science and Chemistry, G. E. Totten, Ed., CRC Press, 2006. [Online]. Available: https://doi.org/10.1002/0470862106.id683.
  • [4] P. F. Lou, X. B. Teng, Q. X. Jia, Y. Q. Wang, and L. Q. Zhang, "Preparation and structure of rare earth/thermoplastic polyurethane fiber for X-ray shielding," J. Appl. Polym. Sci., vol. 136, no. 17, p. 47435, 2018.
  • [5] T. Cui, S. Duan, R. Chen, R. Wang, and Q. Jia, "Monte Carlo simulation study of rare earth/polypropylene composite shielding 120 KV medical X-ray," J. Phys.: Conf. Ser., vol. 2539, no. 1, p. 012070, Jul. 2023.
  • [6] Y. Liu, X. Li, Y. Yin, Z. Li, H. Yao, Z. Li, and H. Li, "Design and computational validation of γ-ray shielding effectiveness in heavy metal/rare earth oxide–natural rubber composites," Polymers, vol. 16, no. 15, p. 2130, 2024.
  • [7] F.-H. Mai, Q.-P. Zhang, R. Wang, L.-C. Meng, Y. Zhang, J.-L. Li, P.-Q. Liu, Y.-T. Li, and Y.-L. Zhou, "Polymer fibers highly filled with styrene maleic anhydride-modified PbWO4 for improved wear comfort of γ-ray-shielding articles," ACS Appl. Polym. Mater., vol. 4, pp. 6394–6402, 2022.
  • [8] M. Şahiner, Y. Z. Akgök, M. Arslan, and M. H. Ergin, "Dünyada ve Türkiye’de nadir toprak elementleri (NTE)," Maden Tetkik ve Arama Genel Müdürlüğü, Fizibilite Etütleri Daire Başkanlığı, 2017.
  • [9] Y. S. Rammah, A. A. Ali, R. El-Mallawany, and F. I. El-Agawany, "Fabrication, physical, optical characteristics and gamma-ray competence of novel bismuth-borate glasses doped with Yb₂O₃ rare earth," Physica B: Condens. Matter, vol. 583, p. 412055, 2020.
  • [10] Y. S. Rammah, F. I. El-Agawany, K. A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, "FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses," J. Mater. Sci.: Mater. Electron., vol. 31, no. 12, pp. 9099–9113, 2020.
  • [11] H. Jing, L. Geng, S. Qiu, H. Zou, M. Liang, and D. Deng, "Research progress of rare earth composite shielding materials," J. Rare Earths, vol. 41, no. 1, pp. 32–41, 2023.
  • [12] P. Fernandez-Arias, D. Vergara, and J. A. Orosa, "A global review of PWR nuclear power plants," Appl. Sci., vol. 10, no. 13, p. 4434, 2020.
  • [13] P. Wu, M. Liu, J. G. Deng, J. J. Fu, Z. H. Deng, and Y. Q. Song, "Research progress of neutron shielding material," Nucl. Chem. Mater., vol. 45, no. 9, pp. 4–8, 2017.
  • [14] A. A. Suresh, P. Vinothkumar, M. Mohapatra, M. Dhavamurthy, and P. Murugasen, "The effect of rare earth on the radiation shielding properties of transparent lead-free alumino-borophosphate glass system," Radiat. Phys. Chem., vol. 193, p. 109941, 2022.
  • [15] E. S. A. Waly, G. S. Al-Qous, and M. A. Bourham, "Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV," Radiat. Phys. Chem., vol. 150, pp. 120–124, 2018.
  • [16] G. Lakshminarayana et al., "Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications," J. Non-Cryst. Solids, vol. 471, pp. 222–237, May 2017.
  • [17] R. Florez, A. Loaiza, C. H. C. Giraldo, and H. A. Colorado, "Calcium silicate phosphate cement with samarium oxide additions for neutron shielding applications in the nuclear industry," Prog. Nucl. Energy, vol. 133, p. 103650, 2021.
  • [18] M. Ma, M. E. Thomas, P. McGuiggan, and J. B. Spicer, "Weak absorption and scattering losses from the visible to the near-infrared in single-crystal sapphire materials," Opt. Eng., vol. 59, no. 8, p. 87101, 2020.
  • [19] K. M. Mahmoud and Y. S. Rammah, "Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr, and Dy rare earth using MCNP-5 code," Physica B: Condens. Matter, vol. 577, p. 411756, 2020.
  • [20] P. Kaur, D. Singh, and T. Singh, "Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses," Radiat. Phys. Chem., vol. 144, pp. 336–342, 2018.
  • [21] W. F. Yang, Y. Liu, L. Yang, D. Li, and J. Li, "Research progress in shielding materials for nuclear radiation," Mater. Rev., vol. 21, no. 5, pp. 82–87, 2007.
  • [22] B. Gan, S. C. Liu, Z. He, F. C. Chen, H. X. Niu, J. C. Cheng et al., "Research progress of metal-based shielding materials for neutron and gamma rays," Acta Metall. Sin., vol. 7, pp. 68–75, 2021.
  • [23] S. Zhao, Z. P. Huo, G. Q. Zhong, H. Zhang, and L. Q. Hu, "Research progress of neutron and gamma-ray composite shielding materials," J. Funct. Mater., vol. 52, no. 3, pp. 3001–3010, 2021.
  • [24] G. Jagannath, A. G. Pramod, K. Keshavamurthy, B. N. Swetha, B. Bheemaiah, R. Eraiah, R. Rajaramakrishna, R. Ramesh, P. Prajwal, V. Hegde, S. C. Prashantha, and M. S. Alhuthali, "Nonlinear optical, optical limiting and radiation shielding features of Eu³⁺ activated borate glasses," Optik, vol. 232, p. 166563, 2021, doi: 10.1016/j.ijleo.2021.166563.
  • [25] O. I. Sallam, Y. S. Rammah, I. M. Nabil et al., "Enhanced optical and structural traits of irradiated lead borate glasses via Ce³⁺ and Dy³⁺ ions with studying radiation shielding performance," Sci. Rep., vol. 14, p. 24478, 2024, doi: 10.1038/s41598-024-73892-w.
  • [26] F. C. Hila, A. Asuncion-Astronomo, C. A. M. Dingle, J. F. M. Jecong, A. M. V. Javier-Hila, M. B. Z. Gili, C. V. Balderas, G. E. P. Lopez, N. R. D. Guillermo, and A. V. Amorsolo Jr., "EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8)," Radiat. Phys. Chem., vol. 182, p. 109331, 2021.
  • [27] PubChem, "Periodic Table," National Center for Biotechnology Information, [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/periodic-table/. [Accessed: Aug. 3, 2024].
  • [28] T. Şahmaran and N. Yavuzkanat, "Evaluation of gamma and neutron radiation shielding parameters of some glass materials by Monte Carlo and theoretical methods," Radiat. Eff. Defects Solids, vol. 179, no. 3–4, pp. 489–500, 2024.
  • [29] American National Standards Institute (ANSI), "Gamma-ray attenuation coefficient and buildup factors for engineering materials," ANS/ANSI-6.4.3, 1991.
  • [30] Y. Karabul, "Bazalt numunelerde EABF ve EBF parametrelerinin yeni bir metot ile tayini," M.S. thesis, İstanbul Univ., Inst. of Science, Istanbul, 2014, pp. 13–14.
  • [31] P. S. Singh, T. Singh, and P. Kaur, "Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents," Ann. Nucl. Energy, vol. 35, pp. 1093–1097, 2008.
  • [32] S. Bilici, A. Bilici, and F. Külahcı, "Comparison photon exposure and energy absorption buildup factors of CR-39 and Trivex optical lenses," Turk. J. Sci. Technol., vol. 17, no. 1, pp. 23–35, 2022.
  • [33] N. Yavuzkanat, "Fosfor-sandviç tipi dedektör sisteminin toplam gama verimi için modellenen Geant4 tabanlı GATE simülasyonu," ALKÜ Fen Bilimleri Dergisi, vol. 2, no. 3, pp. 150–162, 2020, doi: 10.46740/alku.804473.
  • [34] N. Nagaraj, H. C. Manjunatha, Y. S. Vidya, L. Seenappa, K. N. Sridhar, and P. S. Damodara Gupta, "Investigations on lanthanide polymers for radiation shielding purpose," Radiat. Phys. Chem., vol. 199, p. 110310, 2022, doi: 10.1016/j.radphyschem.2022.110310.
  • [35] A. Pyngrope, Study of Radiation Shielding Properties of Lanthanides, Solvent and Glass, 2023, ch. 4, pp. 26–38. ISBN: 978-620-6-76775-6.
There are 35 citations in total.

Details

Primary Language English
Subjects Nuclear Physics, Radiation Technology
Journal Section Araştırma Makalesi
Authors

Nuray Yavuzkanat 0000-0001-5055-9185

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date September 30, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

IEEE N. Yavuzkanat, “Exploring Radiation Shielding Properties of Lanthanide Elements”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 1314–1324, 2024, doi: 10.17798/bitlisfen.1558208.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS