Research Article
BibTex RIS Cite

An Investigation of the Fresh and Hardened Properties of Nano Zinc Oxide Reinforced 3D Printed Geopolymer Mortars

Year 2024, Volume: 13 Issue: 4, 1325 - 1334, 31.12.2024
https://doi.org/10.17798/bitlisfen.1561303

Abstract

It is well known that even small amounts of nanomaterials can improve the mortar structure and enhance its fresh state and hardened properties. This paper investigates the fresh state and hardened properties of nano zinc oxide-reinforced 3D-printed geopolymer mortars. The mechanical properties of 7, 28, 90, and 180 days of 3D-printed geopolymer mortars cured at ambient temperature were investigated. For this purpose, 3D-printed geopolymer mortar samples containing 0%, 0.25%, 0.50%, and 0.75% nano zinc oxide were produced. Flow table and buildability tests were applied to these samples to determine the fresh state properties. Ultrasonic pulse velocity, flexural strength, and compressive strength tests were applied to the hardened 3D-printed geopolymer mortar samples. The best mechanical test results were obtained from 3D-printed geopolymer mortar samples containing 0.5% nano zinc oxide at the end of all curing times. In the ZN 50 series cured for 28 days, approximately 29% higher strength was obtained in FS and 66% higher in compressive strength compared to the ZN 0 series without nanomaterials. It has been noted that incorporating a tiny quantity of nano zinc oxide into 3D-printed geopolymer mortars improves their mechanical performance.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] M. Usman, M. Arshad, and A. Raza, “Araştırma Makalesi Mechanical Performance of Microfiber-Reinforced Geopolymer Mortar with Nano-Titania,” no. June, 2024.
  • [2] J. Davidovits and S. A. Cordi, “Synthesis of new high temperature geo-polymers for reinforced plastics/composites,” Spe Pactec, vol. 79, pp. 151–154, 1979.
  • [3] H. Xu and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, 2000, doi: 10.1016/S0301-7516(99)00074-5.
  • [4] M. Seloğlu, “Investigation of the Mechanical and Durability Properties of Geopolymer Mortars Produced With a 3D Printer Based on Metakaolin and Fly Ash Containing Nanomaterial,” Dicle University, 2024.
  • [5] B. Khoshnevis, “Automated construction by contour crafting - Related robotics and information technologies,” Autom. Constr., vol. 13, no. 1, pp. 5–19, 2004, doi: 10.1016/j.autcon.2003.08.012.
  • [6] D. Ahlers, “Development of a Software for the Design of Electronic Circuits in 3D-Printable Objects,” no. December 2015, 2015, doi: 10.13140/RG.2.2.14755.60963.
  • [7] O. Diegel, A. Nordin, and D. Motte, Additive Manufacturing Technologies. 2019. doi: 10.1007/978-981-13-8281-9_2.
  • [8] S. Ö. Felek, “Mimari Yapılarda 3 Boyutlu Yazıcıların Kullanimı,” Int. J. 3D Print. Technol. Digit. Ind., vol. 3, no. 3, pp. 289–296, 2019, [Online]. Available: https://dergipark.org.tr/en/pub/ij3dptdi/issue/51591/630599
  • [9] M. Seloğlu, H. Tanyildizi, and M. E. Öncü, “An Investigation of the Strength Properties of Fly Ash and Metakaolin-Based Geopolymer Mortars Containing Multi-Wall Carbon Nanotube, Nano Silica, and Nano Zinc,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 12, no. 3, pp. 842–852.
  • [10] H. G. Şahin and A. Mardani-Aghabaglou, “Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review,” Constr. Build. Mater., vol. 316, no. November 2021, 2022, doi: 10.1016/j.conbuildmat.2021.125865.
  • [11] B. Panda, S. Ruan, C. Unluer, and M. J. Tan, “Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing,” Compos. Part B Eng., vol. 186, no. November 2019, p. 107826, 2020, doi: 10.1016/j.compositesb.2020.107826.
  • [12] B. Panda, C. Unluer, and M. J. Tan, “Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing,” Compos. Part B Eng., vol. 176, no. July, p. 107290, 2019, doi: 10.1016/j.compositesb.2019.107290.
  • [13] G. X. Zhou et al., “3D printing geopolymer nanocomposites structure: Graphene oxide size effects on a reactive matrix,” Carbon N. Y., vol. 164, pp. 215–223, 2020, doi: 10.1016/j.carbon.2020.02.021.
  • [14] H. Zhong and M. Zhang, “3D printing geopolymers: A review,” Cem. Concr. Compos., vol. 128, no. January, p. 104455, 2022, doi: 10.1016/j.cemconcomp.2022.104455.
  • [15] S. Qaidi, A. Yahia, B. A. Tayeh, H. Unis, R. Faraj, and A. Mohammed, “3D printed geopolymer composites: A review,” Mater. Today Sustain., vol. 20, p. 100240, 2022, doi: 10.1016/j.mtsust.2022.100240.
  • [16] M. H. Raza, R. Y. Zhong, and M. Khan, “Recent advances and productivity analysis of 3D printed geopolymers,” Addit. Manuf., vol. 52, no. January, p. 102685, 2022, doi: 10.1016/j.addma.2022.102685.
  • [17] S. H. Bong, M. Xia, B. Nematollahi, and C. Shi, “Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications,” Cem. Concr. Compos., vol. 121, no. April, p. 104060, 2021, doi: 10.1016/j.cemconcomp.2021.104060.
  • [18] S. N. Zailan, A. Bouaissi, N. Mahmed, and M. M. A. B. Abdullah, “Influence of ZnO nanoparticles on mechanical properties and photocatalytic activity of self-cleaning ZnO-based geopolymer paste,” J. Inorg. Organomet. Polym. Mater., vol. 30, pp. 2007–2016, 2020.
  • [19] Z. Zidi, M. Ltifi, and I. Zafar, “Comparative study: nanosilica, nanoalumina, and nanozinc oxide addition on the properties of localized geopolymer,” J. Aust. Ceram. Soc., vol. 57, no. 3, pp. 783–792, 2021.
  • [20] Z. Zidi, M. Ltifi, Z. Ben Ayadi, L. E. L. Mir, and X. R. Nóvoa, “Effect of nano-ZnO on mechanical and thermal properties of geopolymer,” J. Asian Ceram. Soc., vol. 8, no. 1, pp. 1–9, 2020.
  • [21] A. Nazari and S. Riahi, “The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder,” Mater. Res., vol. 14, pp. 299–306, 2011.
  • [22] C. B. Nayak, P. P. Taware, U. T. Jagadale, N. A. Jadhav, and S. G. Morkhade, “Effect of SiO2 and ZnO Nano-Composites on Mechanical and Chemical Properties of Modified Concrete,” Iran. J. Sci. Technol. Trans. Civ. Eng., vol. 46, no. 2, pp. 1237–1247, 2022, doi: 10.1007/s40996-021-00694-9.
  • [23] M. Rustan, Subaer, and Irhamsyah, “Studi Tentang Pengaruh Nanopartikel ZnO (Seng Oksida) Terhadap Kuat Tekan Geopolimer Berbahan Dasar Metakaolin,” J. Sains dan Pendidik. Fis., vol. 11, no. 3, pp. 286–291, 2015.
  • [24] M. Sarkar, M. Maiti, M. Akbar Malik, and S. Xu, “Development of anti-bio deteriorate sustainable geopolymer by SiO2 NPs decorated ZnO NRs,” Adv. Mater. Lett., vol. 10, no. 2, pp. 128–131, 2019.
  • [25] H. Tanyildizi, M. Seloglu, and A. Coskun, “The effect of nano zinc oxide on freeze-thaw resistance of 3D-printed geopolymer mortars,” J. Build. Eng., vol. 96, no. July, p. 110431, 2024, doi: 10.1016/j.jobe.2024.110431.
  • [26] M. F. Ali, M. T. Rashed, M. A. Bari, and K. M. Razi, “Effect of Zinc Oxide Nanoparticle on Properties of Concrete,” Int. Reserach J. Eng. Technol., vol. 7, no. 2, pp. 1026–1029, 2020.
  • [27] R. Samuvel Raj, G. Prince Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, and M. Z. Naser, “Nanomaterials in geopolymer composites: A review,” Dev. Built Environ., vol. 13, no. December 2022, p. 100114, 2023, doi: 10.1016/j.dibe.2022.100114.
  • [28] R. S. Raj, G. P. Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, and M. Z. Naser, “Nanomaterials in geopolymer composites: A review,” Dev. Built Environ., vol. 13, p. 100114, 2023.
  • [29] L. Wang, W. Xiao, Q. Wang, H. Jiang, and G. Ma, “Freeze-thaw resistance of 3D-printed composites with desert sand,” Cem. Concr. Compos., vol. 133, p. 104693, 2022.
  • [30] A. Mohsen, H. A. Abdel-Gawwad, and M. Ramadan, “Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles,” Constr. Build. Mater., vol. 257, p. 119584, 2020, doi: 10.1016/j.conbuildmat.2020.119584.
  • [31] J. Tan, Z. Sierens, B. Vandevyvere, H. Dan, and J. Li, “Zinc oxide in alkali-activated slag (AAS): retardation mechanism, reaction kinetics and immobilization,” Constr. Build. Mater., vol. 371, p. 130739, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.130739.
  • [32] C. Astm, “230, Standard specification for flow table for use in tests of hydraulic cement,” West Conshohocken, PA ASTM Int., 2008.
  • [33] S. Muthukrishnan, S. Ramakrishnan, and J. Sanjayan, “Technologies for improving buildability in 3D concrete printing,” Cem. Concr. Compos., vol. 122, p. 104144, 2021.
  • [34] C. ASTM, “Standard test method for flow of hydraulic cement mortar,” C1437, 2007.
  • [35] A. ASTM, “C348-14 Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM Int,” West Conshohocken.
  • [36] A. ASTM, “C349-08: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure),” ASTM Int. West Conshohocken, PA, USA, 2008.
  • [37] B. Panda, S. Ruan, C. Unluer, and M. J. Tan, “Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay,” Compos. Part B Eng., vol. 165, pp. 75-83, 2019.
  • [38] C. S. Sobhy, et al. "Insights on the influence of nano-Titanium dioxide and nano-Zinc oxide on mechanical properties and inhibiting of steel reinforcement." Case Studies in Construction Materials 16: e01017, 2022.
  • [39] M. Kumar, B. Manjeet, and G. Rishav. "An overview of beneficiary aspects of zinc oxide nanoparticles on performance of cement composites." Materials Today: Proceedings 43, 892-898, 2021.
  • [40] M. R. Arefi, S. Rezaei-Zarchi, and S. Imani, “Synthesis of ZnO nanoparticles and their antibacterial effects,” African J. Biotechnol., vol. 11, no. 34, pp. 8520-8526, 2012.
Year 2024, Volume: 13 Issue: 4, 1325 - 1334, 31.12.2024
https://doi.org/10.17798/bitlisfen.1561303

Abstract

References

  • [1] M. Usman, M. Arshad, and A. Raza, “Araştırma Makalesi Mechanical Performance of Microfiber-Reinforced Geopolymer Mortar with Nano-Titania,” no. June, 2024.
  • [2] J. Davidovits and S. A. Cordi, “Synthesis of new high temperature geo-polymers for reinforced plastics/composites,” Spe Pactec, vol. 79, pp. 151–154, 1979.
  • [3] H. Xu and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, 2000, doi: 10.1016/S0301-7516(99)00074-5.
  • [4] M. Seloğlu, “Investigation of the Mechanical and Durability Properties of Geopolymer Mortars Produced With a 3D Printer Based on Metakaolin and Fly Ash Containing Nanomaterial,” Dicle University, 2024.
  • [5] B. Khoshnevis, “Automated construction by contour crafting - Related robotics and information technologies,” Autom. Constr., vol. 13, no. 1, pp. 5–19, 2004, doi: 10.1016/j.autcon.2003.08.012.
  • [6] D. Ahlers, “Development of a Software for the Design of Electronic Circuits in 3D-Printable Objects,” no. December 2015, 2015, doi: 10.13140/RG.2.2.14755.60963.
  • [7] O. Diegel, A. Nordin, and D. Motte, Additive Manufacturing Technologies. 2019. doi: 10.1007/978-981-13-8281-9_2.
  • [8] S. Ö. Felek, “Mimari Yapılarda 3 Boyutlu Yazıcıların Kullanimı,” Int. J. 3D Print. Technol. Digit. Ind., vol. 3, no. 3, pp. 289–296, 2019, [Online]. Available: https://dergipark.org.tr/en/pub/ij3dptdi/issue/51591/630599
  • [9] M. Seloğlu, H. Tanyildizi, and M. E. Öncü, “An Investigation of the Strength Properties of Fly Ash and Metakaolin-Based Geopolymer Mortars Containing Multi-Wall Carbon Nanotube, Nano Silica, and Nano Zinc,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 12, no. 3, pp. 842–852.
  • [10] H. G. Şahin and A. Mardani-Aghabaglou, “Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review,” Constr. Build. Mater., vol. 316, no. November 2021, 2022, doi: 10.1016/j.conbuildmat.2021.125865.
  • [11] B. Panda, S. Ruan, C. Unluer, and M. J. Tan, “Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing,” Compos. Part B Eng., vol. 186, no. November 2019, p. 107826, 2020, doi: 10.1016/j.compositesb.2020.107826.
  • [12] B. Panda, C. Unluer, and M. J. Tan, “Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing,” Compos. Part B Eng., vol. 176, no. July, p. 107290, 2019, doi: 10.1016/j.compositesb.2019.107290.
  • [13] G. X. Zhou et al., “3D printing geopolymer nanocomposites structure: Graphene oxide size effects on a reactive matrix,” Carbon N. Y., vol. 164, pp. 215–223, 2020, doi: 10.1016/j.carbon.2020.02.021.
  • [14] H. Zhong and M. Zhang, “3D printing geopolymers: A review,” Cem. Concr. Compos., vol. 128, no. January, p. 104455, 2022, doi: 10.1016/j.cemconcomp.2022.104455.
  • [15] S. Qaidi, A. Yahia, B. A. Tayeh, H. Unis, R. Faraj, and A. Mohammed, “3D printed geopolymer composites: A review,” Mater. Today Sustain., vol. 20, p. 100240, 2022, doi: 10.1016/j.mtsust.2022.100240.
  • [16] M. H. Raza, R. Y. Zhong, and M. Khan, “Recent advances and productivity analysis of 3D printed geopolymers,” Addit. Manuf., vol. 52, no. January, p. 102685, 2022, doi: 10.1016/j.addma.2022.102685.
  • [17] S. H. Bong, M. Xia, B. Nematollahi, and C. Shi, “Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications,” Cem. Concr. Compos., vol. 121, no. April, p. 104060, 2021, doi: 10.1016/j.cemconcomp.2021.104060.
  • [18] S. N. Zailan, A. Bouaissi, N. Mahmed, and M. M. A. B. Abdullah, “Influence of ZnO nanoparticles on mechanical properties and photocatalytic activity of self-cleaning ZnO-based geopolymer paste,” J. Inorg. Organomet. Polym. Mater., vol. 30, pp. 2007–2016, 2020.
  • [19] Z. Zidi, M. Ltifi, and I. Zafar, “Comparative study: nanosilica, nanoalumina, and nanozinc oxide addition on the properties of localized geopolymer,” J. Aust. Ceram. Soc., vol. 57, no. 3, pp. 783–792, 2021.
  • [20] Z. Zidi, M. Ltifi, Z. Ben Ayadi, L. E. L. Mir, and X. R. Nóvoa, “Effect of nano-ZnO on mechanical and thermal properties of geopolymer,” J. Asian Ceram. Soc., vol. 8, no. 1, pp. 1–9, 2020.
  • [21] A. Nazari and S. Riahi, “The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder,” Mater. Res., vol. 14, pp. 299–306, 2011.
  • [22] C. B. Nayak, P. P. Taware, U. T. Jagadale, N. A. Jadhav, and S. G. Morkhade, “Effect of SiO2 and ZnO Nano-Composites on Mechanical and Chemical Properties of Modified Concrete,” Iran. J. Sci. Technol. Trans. Civ. Eng., vol. 46, no. 2, pp. 1237–1247, 2022, doi: 10.1007/s40996-021-00694-9.
  • [23] M. Rustan, Subaer, and Irhamsyah, “Studi Tentang Pengaruh Nanopartikel ZnO (Seng Oksida) Terhadap Kuat Tekan Geopolimer Berbahan Dasar Metakaolin,” J. Sains dan Pendidik. Fis., vol. 11, no. 3, pp. 286–291, 2015.
  • [24] M. Sarkar, M. Maiti, M. Akbar Malik, and S. Xu, “Development of anti-bio deteriorate sustainable geopolymer by SiO2 NPs decorated ZnO NRs,” Adv. Mater. Lett., vol. 10, no. 2, pp. 128–131, 2019.
  • [25] H. Tanyildizi, M. Seloglu, and A. Coskun, “The effect of nano zinc oxide on freeze-thaw resistance of 3D-printed geopolymer mortars,” J. Build. Eng., vol. 96, no. July, p. 110431, 2024, doi: 10.1016/j.jobe.2024.110431.
  • [26] M. F. Ali, M. T. Rashed, M. A. Bari, and K. M. Razi, “Effect of Zinc Oxide Nanoparticle on Properties of Concrete,” Int. Reserach J. Eng. Technol., vol. 7, no. 2, pp. 1026–1029, 2020.
  • [27] R. Samuvel Raj, G. Prince Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, and M. Z. Naser, “Nanomaterials in geopolymer composites: A review,” Dev. Built Environ., vol. 13, no. December 2022, p. 100114, 2023, doi: 10.1016/j.dibe.2022.100114.
  • [28] R. S. Raj, G. P. Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, and M. Z. Naser, “Nanomaterials in geopolymer composites: A review,” Dev. Built Environ., vol. 13, p. 100114, 2023.
  • [29] L. Wang, W. Xiao, Q. Wang, H. Jiang, and G. Ma, “Freeze-thaw resistance of 3D-printed composites with desert sand,” Cem. Concr. Compos., vol. 133, p. 104693, 2022.
  • [30] A. Mohsen, H. A. Abdel-Gawwad, and M. Ramadan, “Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles,” Constr. Build. Mater., vol. 257, p. 119584, 2020, doi: 10.1016/j.conbuildmat.2020.119584.
  • [31] J. Tan, Z. Sierens, B. Vandevyvere, H. Dan, and J. Li, “Zinc oxide in alkali-activated slag (AAS): retardation mechanism, reaction kinetics and immobilization,” Constr. Build. Mater., vol. 371, p. 130739, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.130739.
  • [32] C. Astm, “230, Standard specification for flow table for use in tests of hydraulic cement,” West Conshohocken, PA ASTM Int., 2008.
  • [33] S. Muthukrishnan, S. Ramakrishnan, and J. Sanjayan, “Technologies for improving buildability in 3D concrete printing,” Cem. Concr. Compos., vol. 122, p. 104144, 2021.
  • [34] C. ASTM, “Standard test method for flow of hydraulic cement mortar,” C1437, 2007.
  • [35] A. ASTM, “C348-14 Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM Int,” West Conshohocken.
  • [36] A. ASTM, “C349-08: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure),” ASTM Int. West Conshohocken, PA, USA, 2008.
  • [37] B. Panda, S. Ruan, C. Unluer, and M. J. Tan, “Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay,” Compos. Part B Eng., vol. 165, pp. 75-83, 2019.
  • [38] C. S. Sobhy, et al. "Insights on the influence of nano-Titanium dioxide and nano-Zinc oxide on mechanical properties and inhibiting of steel reinforcement." Case Studies in Construction Materials 16: e01017, 2022.
  • [39] M. Kumar, B. Manjeet, and G. Rishav. "An overview of beneficiary aspects of zinc oxide nanoparticles on performance of cement composites." Materials Today: Proceedings 43, 892-898, 2021.
  • [40] M. R. Arefi, S. Rezaei-Zarchi, and S. Imani, “Synthesis of ZnO nanoparticles and their antibacterial effects,” African J. Biotechnol., vol. 11, no. 34, pp. 8520-8526, 2012.
There are 40 citations in total.

Details

Primary Language English
Subjects Construction Materials, Structural Engineering
Journal Section Araştırma Makalesi
Authors

Maksut Seloğlu 0000-0002-0200-8423

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date October 4, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

IEEE M. Seloğlu, “An Investigation of the Fresh and Hardened Properties of Nano Zinc Oxide Reinforced 3D Printed Geopolymer Mortars”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 1325–1334, 2024, doi: 10.17798/bitlisfen.1561303.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS