Research Article
BibTex RIS Cite

Performance Comparisons of Thermal Protection Methods Based on Thermally Enhanced Phase Change Materials

Year 2025, Volume: 14 Issue: 1, 13 - 38, 26.03.2025
https://doi.org/10.17798/bitlisfen.1518320

Abstract

This study focuses on phase change material-based passive thermal protection of electronic components that release heat for a period of time. Firstly, an investigation was carried out in terms of PCM thickness for thermal protection and it was determined that an 11 mm thickness was the appropriate PCM thickness. It was determined that the thermal conductivities in the solid phase could be improved by 35.9%, 119.2%, and 178.6%, respectively, if 1%, 3%, and 5% GNP were doped into the PCM. In the case of 1%, 3%, and 5% GNP doping, it was determined that the melting temperatures of PCM did not change, whereas the latent heat of melting decreased slightly depending on the GNP fraction. The deterioration in the latent melting heat for 5% GNP/RT-44 composite was measured as 5.4%. Then, the thermal protection performance of PCM, Fin/PCM, Nanoparticle/PCM, and Nanoparticle/Fin/PCM composites on an electronic component that releases heat for a period of time was compared in terms of maximum surface temperature and maximum surface temperature difference. The results indicated that the Nanoparticle/PCM thermal protection exhibited a performance improvement effect predominantly during sensible heat storage, whereas the Fin/PCM thermal protection demonstrated an improvement in performance during both sensible heat and latent heat storage. While all thermal protection methods were successful at 3 W heating power, only PCM thermal protection equipped with six fins (6F/PCM) was successful at 6W heating power. At 6 W heating power, maximum temperature and maximum temperature difference performances were improved by 15.3% and 45.2%, respectively, with 6F/PCM thermal protection compared to PCM thermal protection only. An increase in the GNP mass fraction above 3% has been demonstrated to have a detrimental effect on thermal protection. With 3% GNP/6F/PCM hybrid thermal protection, it was determined that the maximum temperature and maximum temperature difference performances have the potential to be improved by 22.3% and 53.4% compared to PCM thermal protection.

Ethical Statement

The study is complied with research and publication ethics.

References

  • A. E. Kabeel, A. Khalil, S. M. Shalaby, and M. E. Zayed, “Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage,” Energy Convers. Manag., vol. 113, pp. 264–272, 2016, doi: 10.1016/j.enconman.2016.01.068.
  • P. Mihálka, C. Lai, S. Wang, and P. Matiaˇ, “Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard,” vol. 159, pp. 419–425, 2018, doi: 10.1016/j.enbuild.2017.10.080.
  • Y. Galazutdinova, S. Ushak, M. Farid, S. Al-Hallaj, and M. Grágeda, “Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application,” J. Power Sources, vol. 491, no. June 2020, 2021, doi: 10.1016/j.jpowsour.2021.229624.
  • W. L. Cheng, B. J. Mei, Y. N. Liu, Y. H. Huang, and X. D. Yuan, “A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation,” Energy, vol. 36, no. 10, pp. 5797–5804, 2011, doi: 10.1016/j.energy.2011.08.050.
  • K. Du, J. Calautit, P. Eames, and Y. Wu, “A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply,” Renew. Energy, vol. 168, pp. 1040–1057, 2021, doi: 10.1016/j.renene.2020.12.057.
  • D. Mondieig, F. Rajabalee, A. Laprie, H. A. J. Oonk, T. Calvet, and M. A. Cuevas-Diarte, “Protection of temperature sensitive biomedical products using molecular alloys as phase change material,” Transfus. Apher. Sci., vol. 28, no. 2, pp. 143–148, 2003, doi: 10.1016/S1473-0502(03)00016-8.
  • V. Chinnasamy and H. Cho, “Thermophysical investigation of metallic nanocomposite phase change materials for indoor thermal management,” Int. J. Energy Res., vol. 46, no. 6, pp. 7626–7641, 2022, doi: 10.1002/er.7664.
  • Ü. N. Temel and B. Y. Ç. İ. F. T. Ç. İ, “DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES LIST OF SEYMBOLS,” pp. 75–85, 2018.
  • L. W. Fan et al., “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Appl. Energy, 2013, doi: 10.1016/j.apenergy.2013.04.043.
  • P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, “Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries,” J. Power Sources, vol. 248, pp. 37–43, 2014, doi: 10.1016/j.jpowsour.2013.08.135.
  • Y. Grosu et al., “Hierarchical macro-nanoporous metals for leakage-freeygrosu@cicenergigune.com high-thermal conductivity shape-stabilized phase change materials,” Appl. Energy, vol. 269, no. April, p. 115088, 2020, doi: 10.1016/j.apenergy.2020.115088.
  • B. Zhang, Y. Zhang, K. Li, C. Ma, and B. Yuan, “Novel segregated-structure phase change materials with binary fillers and the application effect in battery thermal management,” J. Energy Storage, vol. 54, no. June, p. 105336, 2022, doi: 10.1016/j.est.2022.105336.
  • D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064.
  • G. Jiang, J. Huang, Y. Fu, M. Cao, and M. Liu, “Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 108, pp. 1119–1125, 2016, doi: 10.1016/j.applthermaleng.2016.07.197.
  • M. Chen et al., “Experimental study on the hybrid carbon based phase change materials for thermal management performance of lithium-ion battery module,” Int. J. Energy Res., vol. 46, no. 12, pp. 17247–17261, 2022, doi: 10.1002/er.8388.
  • C. Ma, Y. Zhang, S. Hu, X. Liu, and S. He, “A copper nanoparticle enhanced phase change material with high thermal conductivity and latent heat for battery thermal management,” J. Loss Prev. Process Ind., vol. 78, no. January, p. 104814, 2022, doi: 10.1016/j.jlp.2022.104814.
  • T. Xu, Y. Li, J. Chen, H. Wu, X. Zhou, and Z. Zhang, “Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material,” Appl. Therm. Eng., vol. 140, no. May, pp. 13–22, 2018, doi: 10.1016/j.applthermaleng.2018.05.060.
  • M. Chen et al., “Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management,” J. Energy Storage, vol. 52, no. PA, p. 104857, 2022, doi: 10.1016/j.est.2022.104857.
  • X. Zhang, C. Liu, and Z. Rao, “Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material,” J. Clean. Prod., vol. 201, pp. 916–924, 2018, doi: 10.1016/j.jclepro.2018.08.076.
  • Z. Wang, Z. Zhang, L. Jia, and L. Yang, “Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery,” Appl. Therm. Eng., vol. 78, pp. 428–436, 2015, doi: 10.1016/j.applthermaleng.2015.01.009.
  • A. Hussain, C. Y. Tso, and C. Y. H. Chao, “Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite,” Energy, vol. 115, pp. 209–218, 2016, doi: 10.1016/j.energy.2016.09.008.
  • Z. Rao, Y. Huo, X. Liu, and G. Zhang, “Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam,” J. Energy Inst., vol. 88, no. 3, pp. 241–246, 2015, doi: 10.1016/j.joei.2014.09.006.
  • H. Dey, S. Pati, P. R. Randive, and L. Baranyi, “Effect of finned networks on PCM based battery thermal management system for cylindrical Li-ion batteries,” Case Stud. Therm. Eng., vol. 59, no. May, p. 104572, 2024, doi: 10.1016/j.csite.2024.104572.
  • M. M. Heyhat, S. Mousavi, and M. Siavashi, “Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle,” J. Energy Storage, vol. 28, no. December 2019, 2020, doi: 10.1016/j.est.2020.101235.
  • A. Moaveni, M. Siavashi, and S. Mousavi, “Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam,” Energy, vol. 288, no. May 2023, p. 129809, 2024, doi: 10.1016/j.energy.2023.129809.
  • Z. Wang, H. Zhang, and X. Xia, “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., 2017, doi: 10.1016/j.ijheatmasstransfer.2017.02.057.
  • S. F. Hosseinizadeh, F. L. Tan, and S. M. Moosania, “Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3827–3838, 2011, doi: 10.1016/j.applthermaleng.2011.07.031.
  • A. Acır and M. Emin Canlı, “Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM),” Appl. Therm. Eng., vol. 144, no. September, pp. 1071–1080, 2018, doi: 10.1016/j.applthermaleng.2018.09.013.
  • L. L. Tian, X. Liu, S. Chen, and Z. G. Shen, “Effect of fin material on PCM melting in a rectangular enclosure,” Appl. Therm. Eng., vol. 167, no. April 2019, 2020, doi: 10.1016/j.applthermaleng.2019.114764.
  • M. J. Huang, P. C. Eames, B. Norton, and N. J. Hewitt, “Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 7, pp. 1598–1603, 2011, doi: 10.1016/j.solmat.2011.01.008.
  • P. Ping, R. Peng, D. Kong, G. Chen, and J. Wen, “Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment,” Energy Convers. Manag., vol. 176, no. August, pp. 131–146, 2018, doi: 10.1016/j.enconman.2018.09.025.
  • G. Türkakar and İ. Hoş, “Numerical investigation of lithium-ion battery thermal management using fins embedded in phase change materials,” J. Fac. Eng. Archit. Gazi Univ., vol. 38, no. 2, pp. 1105–1116, 2023, doi: 10.17341/gazimmfd.762563.
  • F. Bahiraei, A. Fartaj, and G. A. Nazri, “Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications,” Energy Convers. Manag., vol. 153, no. August, pp. 115–128, 2017, doi: 10.1016/j.enconman.2017.09.065.
  • C. V. Hémery, F. Pra, J. F. Robin, and P. Marty, “Experimental performances of a battery thermal management system using a phase change material,” J. Power Sources, vol. 270, pp. 349–358, 2014, doi: 10.1016/j.jpowsour.2014.07.147.
  • U. Nazli, T. Kutlu, S. Murat, and P. Kerim, “Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit,” J. Therm. Anal. Calorim., vol. 133, no. 2, pp. 907–918, 2018, doi: 10.1007/s10973-018-7161-7.
  • Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, “Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites,” Compos. Part A Appl. Sci. Manuf., 2013, doi: 10.1016/j.compositesa.2012.08.010.
  • S. Kim and L. T. Drzal, “High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 1, pp. 136–142, 2009, doi: 10.1016/j.solmat.2008.09.010.
  • N. Javani, I. Dincer, G. F. Naterer, and B. S. Yilbas, “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles,” Int. J. Heat Mass Transf., vol. 72, pp. 690–703, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.076.
  • Z. Wang, H. Zhang, and X. Xia, “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., vol. 109, pp. 958–970, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.02.057.
  • U. N. Temel, “Passive thermal management of a simulated battery pack at different climate conditions,” Appl. Therm. Eng., vol. 158, no. May, p. 113796, 2019, doi: 10.1016/j.applthermaleng.2019.113796.
Year 2025, Volume: 14 Issue: 1, 13 - 38, 26.03.2025
https://doi.org/10.17798/bitlisfen.1518320

Abstract

References

  • A. E. Kabeel, A. Khalil, S. M. Shalaby, and M. E. Zayed, “Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage,” Energy Convers. Manag., vol. 113, pp. 264–272, 2016, doi: 10.1016/j.enconman.2016.01.068.
  • P. Mihálka, C. Lai, S. Wang, and P. Matiaˇ, “Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard,” vol. 159, pp. 419–425, 2018, doi: 10.1016/j.enbuild.2017.10.080.
  • Y. Galazutdinova, S. Ushak, M. Farid, S. Al-Hallaj, and M. Grágeda, “Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application,” J. Power Sources, vol. 491, no. June 2020, 2021, doi: 10.1016/j.jpowsour.2021.229624.
  • W. L. Cheng, B. J. Mei, Y. N. Liu, Y. H. Huang, and X. D. Yuan, “A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: An experimental investigation,” Energy, vol. 36, no. 10, pp. 5797–5804, 2011, doi: 10.1016/j.energy.2011.08.050.
  • K. Du, J. Calautit, P. Eames, and Y. Wu, “A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply,” Renew. Energy, vol. 168, pp. 1040–1057, 2021, doi: 10.1016/j.renene.2020.12.057.
  • D. Mondieig, F. Rajabalee, A. Laprie, H. A. J. Oonk, T. Calvet, and M. A. Cuevas-Diarte, “Protection of temperature sensitive biomedical products using molecular alloys as phase change material,” Transfus. Apher. Sci., vol. 28, no. 2, pp. 143–148, 2003, doi: 10.1016/S1473-0502(03)00016-8.
  • V. Chinnasamy and H. Cho, “Thermophysical investigation of metallic nanocomposite phase change materials for indoor thermal management,” Int. J. Energy Res., vol. 46, no. 6, pp. 7626–7641, 2022, doi: 10.1002/er.7664.
  • Ü. N. Temel and B. Y. Ç. İ. F. T. Ç. İ, “DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES LIST OF SEYMBOLS,” pp. 75–85, 2018.
  • L. W. Fan et al., “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Appl. Energy, 2013, doi: 10.1016/j.apenergy.2013.04.043.
  • P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, “Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries,” J. Power Sources, vol. 248, pp. 37–43, 2014, doi: 10.1016/j.jpowsour.2013.08.135.
  • Y. Grosu et al., “Hierarchical macro-nanoporous metals for leakage-freeygrosu@cicenergigune.com high-thermal conductivity shape-stabilized phase change materials,” Appl. Energy, vol. 269, no. April, p. 115088, 2020, doi: 10.1016/j.apenergy.2020.115088.
  • B. Zhang, Y. Zhang, K. Li, C. Ma, and B. Yuan, “Novel segregated-structure phase change materials with binary fillers and the application effect in battery thermal management,” J. Energy Storage, vol. 54, no. June, p. 105336, 2022, doi: 10.1016/j.est.2022.105336.
  • D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064.
  • G. Jiang, J. Huang, Y. Fu, M. Cao, and M. Liu, “Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management,” Appl. Therm. Eng., vol. 108, pp. 1119–1125, 2016, doi: 10.1016/j.applthermaleng.2016.07.197.
  • M. Chen et al., “Experimental study on the hybrid carbon based phase change materials for thermal management performance of lithium-ion battery module,” Int. J. Energy Res., vol. 46, no. 12, pp. 17247–17261, 2022, doi: 10.1002/er.8388.
  • C. Ma, Y. Zhang, S. Hu, X. Liu, and S. He, “A copper nanoparticle enhanced phase change material with high thermal conductivity and latent heat for battery thermal management,” J. Loss Prev. Process Ind., vol. 78, no. January, p. 104814, 2022, doi: 10.1016/j.jlp.2022.104814.
  • T. Xu, Y. Li, J. Chen, H. Wu, X. Zhou, and Z. Zhang, “Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material,” Appl. Therm. Eng., vol. 140, no. May, pp. 13–22, 2018, doi: 10.1016/j.applthermaleng.2018.05.060.
  • M. Chen et al., “Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management,” J. Energy Storage, vol. 52, no. PA, p. 104857, 2022, doi: 10.1016/j.est.2022.104857.
  • X. Zhang, C. Liu, and Z. Rao, “Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material,” J. Clean. Prod., vol. 201, pp. 916–924, 2018, doi: 10.1016/j.jclepro.2018.08.076.
  • Z. Wang, Z. Zhang, L. Jia, and L. Yang, “Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery,” Appl. Therm. Eng., vol. 78, pp. 428–436, 2015, doi: 10.1016/j.applthermaleng.2015.01.009.
  • A. Hussain, C. Y. Tso, and C. Y. H. Chao, “Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite,” Energy, vol. 115, pp. 209–218, 2016, doi: 10.1016/j.energy.2016.09.008.
  • Z. Rao, Y. Huo, X. Liu, and G. Zhang, “Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam,” J. Energy Inst., vol. 88, no. 3, pp. 241–246, 2015, doi: 10.1016/j.joei.2014.09.006.
  • H. Dey, S. Pati, P. R. Randive, and L. Baranyi, “Effect of finned networks on PCM based battery thermal management system for cylindrical Li-ion batteries,” Case Stud. Therm. Eng., vol. 59, no. May, p. 104572, 2024, doi: 10.1016/j.csite.2024.104572.
  • M. M. Heyhat, S. Mousavi, and M. Siavashi, “Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle,” J. Energy Storage, vol. 28, no. December 2019, 2020, doi: 10.1016/j.est.2020.101235.
  • A. Moaveni, M. Siavashi, and S. Mousavi, “Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam,” Energy, vol. 288, no. May 2023, p. 129809, 2024, doi: 10.1016/j.energy.2023.129809.
  • Z. Wang, H. Zhang, and X. Xia, “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., 2017, doi: 10.1016/j.ijheatmasstransfer.2017.02.057.
  • S. F. Hosseinizadeh, F. L. Tan, and S. M. Moosania, “Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins,” Appl. Therm. Eng., vol. 31, no. 17–18, pp. 3827–3838, 2011, doi: 10.1016/j.applthermaleng.2011.07.031.
  • A. Acır and M. Emin Canlı, “Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM),” Appl. Therm. Eng., vol. 144, no. September, pp. 1071–1080, 2018, doi: 10.1016/j.applthermaleng.2018.09.013.
  • L. L. Tian, X. Liu, S. Chen, and Z. G. Shen, “Effect of fin material on PCM melting in a rectangular enclosure,” Appl. Therm. Eng., vol. 167, no. April 2019, 2020, doi: 10.1016/j.applthermaleng.2019.114764.
  • M. J. Huang, P. C. Eames, B. Norton, and N. J. Hewitt, “Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 7, pp. 1598–1603, 2011, doi: 10.1016/j.solmat.2011.01.008.
  • P. Ping, R. Peng, D. Kong, G. Chen, and J. Wen, “Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment,” Energy Convers. Manag., vol. 176, no. August, pp. 131–146, 2018, doi: 10.1016/j.enconman.2018.09.025.
  • G. Türkakar and İ. Hoş, “Numerical investigation of lithium-ion battery thermal management using fins embedded in phase change materials,” J. Fac. Eng. Archit. Gazi Univ., vol. 38, no. 2, pp. 1105–1116, 2023, doi: 10.17341/gazimmfd.762563.
  • F. Bahiraei, A. Fartaj, and G. A. Nazri, “Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications,” Energy Convers. Manag., vol. 153, no. August, pp. 115–128, 2017, doi: 10.1016/j.enconman.2017.09.065.
  • C. V. Hémery, F. Pra, J. F. Robin, and P. Marty, “Experimental performances of a battery thermal management system using a phase change material,” J. Power Sources, vol. 270, pp. 349–358, 2014, doi: 10.1016/j.jpowsour.2014.07.147.
  • U. Nazli, T. Kutlu, S. Murat, and P. Kerim, “Transient thermal response of phase change material embedded with graphene nanoplatelets in an energy storage unit,” J. Therm. Anal. Calorim., vol. 133, no. 2, pp. 907–918, 2018, doi: 10.1007/s10973-018-7161-7.
  • Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, “Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites,” Compos. Part A Appl. Sci. Manuf., 2013, doi: 10.1016/j.compositesa.2012.08.010.
  • S. Kim and L. T. Drzal, “High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 1, pp. 136–142, 2009, doi: 10.1016/j.solmat.2008.09.010.
  • N. Javani, I. Dincer, G. F. Naterer, and B. S. Yilbas, “Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles,” Int. J. Heat Mass Transf., vol. 72, pp. 690–703, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.12.076.
  • Z. Wang, H. Zhang, and X. Xia, “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., vol. 109, pp. 958–970, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.02.057.
  • U. N. Temel, “Passive thermal management of a simulated battery pack at different climate conditions,” Appl. Therm. Eng., vol. 158, no. May, p. 113796, 2019, doi: 10.1016/j.applthermaleng.2019.113796.
There are 40 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Ahmet Can Çapar 0000-0002-5916-6334

Ümit Nazlı Temel 0000-0001-5053-5124

Publication Date March 26, 2025
Submission Date August 7, 2024
Acceptance Date March 5, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE A. C. Çapar and Ü. N. Temel, “Performance Comparisons of Thermal Protection Methods Based on Thermally Enhanced Phase Change Materials”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 13–38, 2025, doi: 10.17798/bitlisfen.1518320.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS