Research Article
BibTex RIS Cite

Biosorption of Oxytetracycline from Aqueous Solutions by Pine Tree Waste Cones (Pinus nigra Arn.)

Year 2025, Volume: 14 Issue: 1, 69 - 87, 26.03.2025
https://doi.org/10.17798/bitlisfen.1534686

Abstract

Removal of Oxytetracycline (OTC), which is in the antibiotic group with toxicological effects for aquatic ecosystems, is very important due to its negative effects on flora and fauna. Adsorption process, which is one of the most effective methods for removing pharmaceutical pollutants, is an economical and environmentally friendly method. For this reason, in this study, biosorbent obtained from pine tree (Pinus nigra Arn.) waste cone powder (Pn-wcp), which is a low-cost and easily available waste material, was used. The results obtained from the batch adsorption experiments were tested with 4 different kinetic and isotherm models and various error functions were used to determine the most appropriate model. In order to optimize the variables in the adsorption system, contact time and initial OTC concentration factors were investigated. In addition, fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and energy dispersive X-ray (EDX) images of raw and OTC-loaded Pn-wcp were examined. In this study, the most appropriate kinetic model was determined as Pseudo second order (PSO) with 0.999 R2 value and Freundlich isotherm model with 0.998 R2 value. In addition, the maximum adsorption capacity (qmax) was calculated as 67.51 mgOTC/gPn-wcp. The results show that Pn-wcp is a sustainable environmentally friendly biosorbent for OTC removal.

Ethical Statement

The study is complied with research and publication ethics.

References

  • R. Ding et al., “Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline,” Water Res, vol. 143, pp. 589–598, Oct. 2018, doi: 10.1016/j.watres.2018.06.068.
  • Z. LI, W. QI, Y. FENG, Y. LIU, S. Ebrahim, and J. LONG, “Degradation mechanisms of oxytetracycline in the environment,” J Integr Agric, vol. 18, no. 9, pp. 1953–1960, Sep. 2019, doi: 10.1016/S2095-3119(18)62121-5.
  • M. Karpov, B. Seiwert, V. Mordehay, T. Reemtsma, T. Polubesova, and B. Chefetz, “Transformation of oxytetracycline by redox-active Fe (III)- and Mn(IV)-containing minerals: Processes and mechanisms,” Water Res, vol. 145, pp. 136–145, Nov. 2018, doi: 10.1016/j.watres.2018.08.015.
  • P. Gao, M. Munir, and I. Xagoraraki, “Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant,” Science of The Total Environment, vol. 421–422, pp. 173–183, Apr. 2012, doi: 10.1016/j.scitotenv.2012.01.061.
  • H. Schmitt, K. Stoob, G. Hamscher, E. Smit, and W. Seinen, “Tetracyclines and Tetracycline Resistance in Agricultural Soils: Microcosm and Field Studies,” Microb Ecol, vol. 51, no. 3, pp. 267–276, Apr. 2006, doi: 10.1007/s00248-006-9035-y.
  • L. M. Chiesa, M. Nobile, S. Panseri, and F. Arioli, “Suitability of feathers as control matrix for antimicrobial treatments detection compared to muscle and liver of broilers,” Food Control, vol. 91, pp. 268–275, Sep. 2018, doi: 10.1016/j.foodcont.2018.04.002.
  • P. Gao, Y. Ding, H. Li, and I. Xagoraraki, “Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes,” Chemosphere, vol. 88, no. 1, pp. 17–24, Jun. 2012, doi: 10.1016/j.chemosphere.2012.02.017.
  • F.-Z. Gao et al., “The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks,” Environmental Pollution, vol. 312, p. 119978, Nov. 2022, doi: 10.1016/j.envpol.2022.119978.
  • M. Harja and G. Ciobanu, “Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite,” Science of The Total Environment, vol. 628–629, pp. 36–43, Jul. 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • X. Wang, J. Shen, J. Kang, X. Zhao, and Z. Chen, “Mechanism of oxytetracycline removal by aerobic granular sludge in SBR,” Water Res, vol. 161, pp. 308–318, Sep. 2019, doi: 10.1016/j.watres.2019.06.014.
  • J.-A. Park, M. Pineda, M.-L. Peyot, and V. Yargeau, “Degradation of oxytetracycline and doxycycline by ozonation: Degradation pathways and toxicity assessment,” Science of The Total Environment, vol. 856, p. 159076, Jan. 2023, doi: 10.1016/j.scitotenv.2022.159076.
  • W. Sun, Y. Sun, K. J. Shah, H. Zheng, and B. Ma, “Electrochemical degradation of oxytetracycline by Ti-Sn-Sb/γ-Al2O3 three-dimensional electrodes,” J Environ Manage, vol. 241, pp. 22–31, Jul. 2019, doi: 10.1016/j.jenvman.2019.03.128.
  • Y. Wang et al., “Schwertmannite catalyze persulfate to remove oxytetracycline from wastewater under solar light or UV-254,” J Clean Prod, vol. 364, p. 132572, Sep. 2022, doi: 10.1016/j.jclepro.2022.132572.
  • A. Solmaz, M. Karta, T. Depci, T. Turna, and Z. A. Sari, “Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal,” Environ Monit Assess, vol. 195, no. 7, p. 797, Jul. 2023, doi: 10.1007/s10661-023-11421-4.
  • Y. Liu, N. Tan, B. Wang, and Y. Liu, “Stepwise adsorption-oxidation removal of oxytetracycline by Zn0-CNTs-Fe3O4 from aqueous solution,” Chemical Engineering Journal, vol. 375, p. 121963, Nov. 2019, doi: 10.1016/j.cej.2019.121963.
  • J. Zhou, F. Ma, H. Guo, and D. Su, “Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: Synergism of powdered activated carbon and ferroferric oxide nanocatalyst,” Appl Catal B, vol. 269, p. 118784, Jul. 2020, doi: 10.1016/j.apcatb.2020.118784.
  • M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo, “Adsorptive removal of antibiotics from water and wastewater: Progress and challenges,” Science of The Total Environment, vol. 532, pp. 112–126, Nov. 2015, doi: 10.1016/j.scitotenv.2015.05.130.
  • Z. Li, H. Jiang, X. Wang, C. Wang, and X. Wei, “Effect of pH on Adsorption of Tetracycline Antibiotics on Graphene Oxide,” Int J Environ Res Public Health, vol. 20, no. 3, p. 2448, Jan. 2023, doi: 10.3390/ijerph20032448.
  • A. Kumar Subramani, P. Rani, P.-H. Wang, B.-Y. Chen, S. Mohan, and C.-T. Chang, “Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa,” J Environ Chem Eng, vol. 7, no. 4, p. 103215, Aug. 2019, doi: 10.1016/j.jece.2019.103215.
  • M. Berger, J. Ford, and J. L. Goldfarb, “Modeling aqueous contaminant removal due to combined hydrolysis and adsorption: oxytetracycline in the presence of biomass-based activated carbons,” Sep Sci Technol, vol. 54, no. 5, pp. 705–721, Mar. 2019, doi: 10.1080/01496395.2018.1520721.
  • X. Guo and J. Wang, “A general kinetic model for adsorption: Theoretical analysis and modeling,” J Mol Liq, vol. 288, p. 111100, Aug. 2019, doi: 10.1016/j.molliq.2019.111100.
  • J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” J Hazard Mater, vol. 390, p. 122156, May 2020, doi: 10.1016/j.jhazmat.2020.122156.
  • M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, and M. Sillanpää, “Adsorption isotherm models: A comprehensive and systematic review (2010−2020),” Science of The Total Environment, vol. 812, p. 151334, Mar. 2022, doi: 10.1016/j.scitotenv.2021.151334.
  • J. Wang and X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method,” Chemosphere, vol. 258, p. 127279, Nov. 2020, doi: 10.1016/j.chemosphere.2020.127279.
  • S. M. Miraboutalebi, S. K. Nikouzad, M. Peydayesh, N. Allahgholi, L. Vafajoo, and G. McKay, “Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis,” Process Safety and Environmental Protection, vol. 106, pp. 191–202, Feb. 2017, doi: 10.1016/j.psep.2017.01.010.
  • H. Alrobei et al., “Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis,” Ceram Int, vol. 47, no. 7, pp. 10322–10331, Apr. 2021, doi: 10.1016/j.ceramint.2020.07.251.
  • S. S. A. Alkurdi, R. A. Al-Juboori, J. Bundschuh, L. Bowtell, and A. Marchuk, “Inorganic arsenic species removal from water using bone char: A detailed study on adsorption kinetic and isotherm models using error functions analysis,” J Hazard Mater, vol. 405, p. 124112, Mar. 2021, doi: 10.1016/j.jhazmat.2020.124112.
  • I. L. A. Ouma, E. B. Naidoo, and A. E. Ofomaja, “Thermodynamic, kinetic and spectroscopic investigation of arsenite adsorption mechanism on pine cone-magnetite composite,” J Environ Chem Eng, vol. 6, no. 4, pp. 5409–5419, Aug. 2018, doi: 10.1016/j.jece.2018.08.035.
  • M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, and M. Ranđelović, “Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon,” Desalination, vol. 276, no. 1–3, pp. 53–59, Aug. 2011, doi: 10.1016/j.desal.2011.03.013.
  • N. S. Kumar, M. Asif, and M. I. Al-Hazzaa, “Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: kinetics and equilibrium studies,” Environmental Science and Pollution Research, vol. 25, no. 22, pp. 21949–21960, Aug. 2018, doi: 10.1007/s11356-018-2315-5.
  • E. Malkoc, “Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis,” J Hazard Mater, vol. 137, no. 2, pp. 899–908, Sep. 2006, doi: 10.1016/j.jhazmat.2006.03.004.
  • R. Zafar et al., “Efficient and simultaneous removal of four antibiotics with silicone polymer adsorbent from aqueous solution,” Emerg Contam, vol. 9, no. 4, p. 100258, Dec. 2023, doi: 10.1016/j.emcon.2023.100258.
  • M. Harja and G. Ciobanu, “Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite,” Science of The Total Environment, vol. 628–629, pp. 36–43, Jul. 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • G. Başkan, Ü. Açıkel, and M. Levent, “Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles,” Advanced Powder Technology, vol. 33, no. 6, p. 103600, Jun. 2022, doi: 10.1016/j.apt.2022.103600.
  • J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” J Hazard Mater, vol. 390, p. 122156, May 2020, doi: 10.1016/j.jhazmat.2020.122156.
  • A. Terdputtakun, O. Arqueropanyo, P. Sooksamiti, S. Janhom, and W. Naksata, “Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent,” Environ Earth Sci, vol. 76, no. 22, p. 777, Nov. 2017, doi: 10.1007/s12665-017-7110-y.
  • P. Bobde, A. K. Sharma, R. Kumar, S. Pal, J. K. Pandey, and S. Wadhwa, “Adsorptive removal of oxytetracycline using MnO2-engineered pine-cone biochar: thermodynamic and kinetic investigation and process optimization,” Environ Monit Assess, vol. 195, no. 11, p. 1291, Nov. 2023, doi: 10.1007/s10661-023-11932-0.
  • S. O. Sanni, O. Oluokun, S. O. Akpotu, A. Pholosi, and V. E Pakade, “Removal of tetracycline from the aquatic environment using activated carbon: A comparative study of adsorption performance based on the activator agents,” Heliyon, vol. 10, no. 14, p. e34637, Jul. 2024, doi: 10.1016/j.heliyon.2024.e34637.
  • S. Wang, L. Wu, L. Wang, J. Zhou, H. Ma, and D. Chen, “Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC,” Materials, vol. 16, no. 14, p. 4966, Jul. 2023, doi: 10.3390/ma16144966.
  • M. J. Ahmed, “Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review,” Environ Toxicol Pharmacol, vol. 50, pp. 1–10, Mar. 2017, doi: 10.1016/j.etap.2017.01.004.
  • H. Fu et al., “Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling,” Journal of Environmental Sciences, vol. 56, pp. 145–152, Jun. 2017, doi: 10.1016/j.jes.2016.09.010.
  • M. N. Alnajrani and O. A. Alsager, “Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism,” Sci Rep, vol. 10, no. 1, p. 794, Jan. 2020, doi: 10.1038/s41598-020-57616-4.
  • X. Song, D. Liu, G. Zhang, M. Frigon, X. Meng, and K. Li, “Adsorption mechanisms and the effect of oxytetracycline on activated sludge,” Bioresour Technol, vol. 151, pp. 428–431, Jan. 2014, doi: 10.1016/j.biortech.2013.10.055.
  • H. Zhou et al., “High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: Adsorption behavior and mechanism,” Int J Biol Macromol, vol. 234, p. 123689, Apr. 2023, doi: 10.1016/j.ijbiomac.2023.123689.
  • C. Yan, L. Fan, Y. Chen, and Y. Xiong, “Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid,” Colloids Surf A Physicochem Eng Asp, vol. 602, p. 125135, Oct. 2020, doi: 10.1016/j.colsurfa.2020.125135.
Year 2025, Volume: 14 Issue: 1, 69 - 87, 26.03.2025
https://doi.org/10.17798/bitlisfen.1534686

Abstract

References

  • R. Ding et al., “Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline,” Water Res, vol. 143, pp. 589–598, Oct. 2018, doi: 10.1016/j.watres.2018.06.068.
  • Z. LI, W. QI, Y. FENG, Y. LIU, S. Ebrahim, and J. LONG, “Degradation mechanisms of oxytetracycline in the environment,” J Integr Agric, vol. 18, no. 9, pp. 1953–1960, Sep. 2019, doi: 10.1016/S2095-3119(18)62121-5.
  • M. Karpov, B. Seiwert, V. Mordehay, T. Reemtsma, T. Polubesova, and B. Chefetz, “Transformation of oxytetracycline by redox-active Fe (III)- and Mn(IV)-containing minerals: Processes and mechanisms,” Water Res, vol. 145, pp. 136–145, Nov. 2018, doi: 10.1016/j.watres.2018.08.015.
  • P. Gao, M. Munir, and I. Xagoraraki, “Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant,” Science of The Total Environment, vol. 421–422, pp. 173–183, Apr. 2012, doi: 10.1016/j.scitotenv.2012.01.061.
  • H. Schmitt, K. Stoob, G. Hamscher, E. Smit, and W. Seinen, “Tetracyclines and Tetracycline Resistance in Agricultural Soils: Microcosm and Field Studies,” Microb Ecol, vol. 51, no. 3, pp. 267–276, Apr. 2006, doi: 10.1007/s00248-006-9035-y.
  • L. M. Chiesa, M. Nobile, S. Panseri, and F. Arioli, “Suitability of feathers as control matrix for antimicrobial treatments detection compared to muscle and liver of broilers,” Food Control, vol. 91, pp. 268–275, Sep. 2018, doi: 10.1016/j.foodcont.2018.04.002.
  • P. Gao, Y. Ding, H. Li, and I. Xagoraraki, “Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes,” Chemosphere, vol. 88, no. 1, pp. 17–24, Jun. 2012, doi: 10.1016/j.chemosphere.2012.02.017.
  • F.-Z. Gao et al., “The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks,” Environmental Pollution, vol. 312, p. 119978, Nov. 2022, doi: 10.1016/j.envpol.2022.119978.
  • M. Harja and G. Ciobanu, “Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite,” Science of The Total Environment, vol. 628–629, pp. 36–43, Jul. 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • X. Wang, J. Shen, J. Kang, X. Zhao, and Z. Chen, “Mechanism of oxytetracycline removal by aerobic granular sludge in SBR,” Water Res, vol. 161, pp. 308–318, Sep. 2019, doi: 10.1016/j.watres.2019.06.014.
  • J.-A. Park, M. Pineda, M.-L. Peyot, and V. Yargeau, “Degradation of oxytetracycline and doxycycline by ozonation: Degradation pathways and toxicity assessment,” Science of The Total Environment, vol. 856, p. 159076, Jan. 2023, doi: 10.1016/j.scitotenv.2022.159076.
  • W. Sun, Y. Sun, K. J. Shah, H. Zheng, and B. Ma, “Electrochemical degradation of oxytetracycline by Ti-Sn-Sb/γ-Al2O3 three-dimensional electrodes,” J Environ Manage, vol. 241, pp. 22–31, Jul. 2019, doi: 10.1016/j.jenvman.2019.03.128.
  • Y. Wang et al., “Schwertmannite catalyze persulfate to remove oxytetracycline from wastewater under solar light or UV-254,” J Clean Prod, vol. 364, p. 132572, Sep. 2022, doi: 10.1016/j.jclepro.2022.132572.
  • A. Solmaz, M. Karta, T. Depci, T. Turna, and Z. A. Sari, “Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal,” Environ Monit Assess, vol. 195, no. 7, p. 797, Jul. 2023, doi: 10.1007/s10661-023-11421-4.
  • Y. Liu, N. Tan, B. Wang, and Y. Liu, “Stepwise adsorption-oxidation removal of oxytetracycline by Zn0-CNTs-Fe3O4 from aqueous solution,” Chemical Engineering Journal, vol. 375, p. 121963, Nov. 2019, doi: 10.1016/j.cej.2019.121963.
  • J. Zhou, F. Ma, H. Guo, and D. Su, “Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: Synergism of powdered activated carbon and ferroferric oxide nanocatalyst,” Appl Catal B, vol. 269, p. 118784, Jul. 2020, doi: 10.1016/j.apcatb.2020.118784.
  • M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo, “Adsorptive removal of antibiotics from water and wastewater: Progress and challenges,” Science of The Total Environment, vol. 532, pp. 112–126, Nov. 2015, doi: 10.1016/j.scitotenv.2015.05.130.
  • Z. Li, H. Jiang, X. Wang, C. Wang, and X. Wei, “Effect of pH on Adsorption of Tetracycline Antibiotics on Graphene Oxide,” Int J Environ Res Public Health, vol. 20, no. 3, p. 2448, Jan. 2023, doi: 10.3390/ijerph20032448.
  • A. Kumar Subramani, P. Rani, P.-H. Wang, B.-Y. Chen, S. Mohan, and C.-T. Chang, “Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa,” J Environ Chem Eng, vol. 7, no. 4, p. 103215, Aug. 2019, doi: 10.1016/j.jece.2019.103215.
  • M. Berger, J. Ford, and J. L. Goldfarb, “Modeling aqueous contaminant removal due to combined hydrolysis and adsorption: oxytetracycline in the presence of biomass-based activated carbons,” Sep Sci Technol, vol. 54, no. 5, pp. 705–721, Mar. 2019, doi: 10.1080/01496395.2018.1520721.
  • X. Guo and J. Wang, “A general kinetic model for adsorption: Theoretical analysis and modeling,” J Mol Liq, vol. 288, p. 111100, Aug. 2019, doi: 10.1016/j.molliq.2019.111100.
  • J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” J Hazard Mater, vol. 390, p. 122156, May 2020, doi: 10.1016/j.jhazmat.2020.122156.
  • M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, and M. Sillanpää, “Adsorption isotherm models: A comprehensive and systematic review (2010−2020),” Science of The Total Environment, vol. 812, p. 151334, Mar. 2022, doi: 10.1016/j.scitotenv.2021.151334.
  • J. Wang and X. Guo, “Adsorption isotherm models: Classification, physical meaning, application and solving method,” Chemosphere, vol. 258, p. 127279, Nov. 2020, doi: 10.1016/j.chemosphere.2020.127279.
  • S. M. Miraboutalebi, S. K. Nikouzad, M. Peydayesh, N. Allahgholi, L. Vafajoo, and G. McKay, “Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis,” Process Safety and Environmental Protection, vol. 106, pp. 191–202, Feb. 2017, doi: 10.1016/j.psep.2017.01.010.
  • H. Alrobei et al., “Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis,” Ceram Int, vol. 47, no. 7, pp. 10322–10331, Apr. 2021, doi: 10.1016/j.ceramint.2020.07.251.
  • S. S. A. Alkurdi, R. A. Al-Juboori, J. Bundschuh, L. Bowtell, and A. Marchuk, “Inorganic arsenic species removal from water using bone char: A detailed study on adsorption kinetic and isotherm models using error functions analysis,” J Hazard Mater, vol. 405, p. 124112, Mar. 2021, doi: 10.1016/j.jhazmat.2020.124112.
  • I. L. A. Ouma, E. B. Naidoo, and A. E. Ofomaja, “Thermodynamic, kinetic and spectroscopic investigation of arsenite adsorption mechanism on pine cone-magnetite composite,” J Environ Chem Eng, vol. 6, no. 4, pp. 5409–5419, Aug. 2018, doi: 10.1016/j.jece.2018.08.035.
  • M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, and M. Ranđelović, “Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon,” Desalination, vol. 276, no. 1–3, pp. 53–59, Aug. 2011, doi: 10.1016/j.desal.2011.03.013.
  • N. S. Kumar, M. Asif, and M. I. Al-Hazzaa, “Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: kinetics and equilibrium studies,” Environmental Science and Pollution Research, vol. 25, no. 22, pp. 21949–21960, Aug. 2018, doi: 10.1007/s11356-018-2315-5.
  • E. Malkoc, “Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis,” J Hazard Mater, vol. 137, no. 2, pp. 899–908, Sep. 2006, doi: 10.1016/j.jhazmat.2006.03.004.
  • R. Zafar et al., “Efficient and simultaneous removal of four antibiotics with silicone polymer adsorbent from aqueous solution,” Emerg Contam, vol. 9, no. 4, p. 100258, Dec. 2023, doi: 10.1016/j.emcon.2023.100258.
  • M. Harja and G. Ciobanu, “Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite,” Science of The Total Environment, vol. 628–629, pp. 36–43, Jul. 2018, doi: 10.1016/j.scitotenv.2018.02.027.
  • G. Başkan, Ü. Açıkel, and M. Levent, “Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles,” Advanced Powder Technology, vol. 33, no. 6, p. 103600, Jun. 2022, doi: 10.1016/j.apt.2022.103600.
  • J. Wang and X. Guo, “Adsorption kinetic models: Physical meanings, applications, and solving methods,” J Hazard Mater, vol. 390, p. 122156, May 2020, doi: 10.1016/j.jhazmat.2020.122156.
  • A. Terdputtakun, O. Arqueropanyo, P. Sooksamiti, S. Janhom, and W. Naksata, “Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent,” Environ Earth Sci, vol. 76, no. 22, p. 777, Nov. 2017, doi: 10.1007/s12665-017-7110-y.
  • P. Bobde, A. K. Sharma, R. Kumar, S. Pal, J. K. Pandey, and S. Wadhwa, “Adsorptive removal of oxytetracycline using MnO2-engineered pine-cone biochar: thermodynamic and kinetic investigation and process optimization,” Environ Monit Assess, vol. 195, no. 11, p. 1291, Nov. 2023, doi: 10.1007/s10661-023-11932-0.
  • S. O. Sanni, O. Oluokun, S. O. Akpotu, A. Pholosi, and V. E Pakade, “Removal of tetracycline from the aquatic environment using activated carbon: A comparative study of adsorption performance based on the activator agents,” Heliyon, vol. 10, no. 14, p. e34637, Jul. 2024, doi: 10.1016/j.heliyon.2024.e34637.
  • S. Wang, L. Wu, L. Wang, J. Zhou, H. Ma, and D. Chen, “Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC,” Materials, vol. 16, no. 14, p. 4966, Jul. 2023, doi: 10.3390/ma16144966.
  • M. J. Ahmed, “Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review,” Environ Toxicol Pharmacol, vol. 50, pp. 1–10, Mar. 2017, doi: 10.1016/j.etap.2017.01.004.
  • H. Fu et al., “Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling,” Journal of Environmental Sciences, vol. 56, pp. 145–152, Jun. 2017, doi: 10.1016/j.jes.2016.09.010.
  • M. N. Alnajrani and O. A. Alsager, “Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism,” Sci Rep, vol. 10, no. 1, p. 794, Jan. 2020, doi: 10.1038/s41598-020-57616-4.
  • X. Song, D. Liu, G. Zhang, M. Frigon, X. Meng, and K. Li, “Adsorption mechanisms and the effect of oxytetracycline on activated sludge,” Bioresour Technol, vol. 151, pp. 428–431, Jan. 2014, doi: 10.1016/j.biortech.2013.10.055.
  • H. Zhou et al., “High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: Adsorption behavior and mechanism,” Int J Biol Macromol, vol. 234, p. 123689, Apr. 2023, doi: 10.1016/j.ijbiomac.2023.123689.
  • C. Yan, L. Fan, Y. Chen, and Y. Xiong, “Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid,” Colloids Surf A Physicochem Eng Asp, vol. 602, p. 125135, Oct. 2020, doi: 10.1016/j.colsurfa.2020.125135.
There are 45 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other)
Journal Section Research Article
Authors

Talip Turna 0000-0001-6318-7245

Publication Date March 26, 2025
Submission Date August 16, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE T. Turna, “Biosorption of Oxytetracycline from Aqueous Solutions by Pine Tree Waste Cones (Pinus nigra Arn.)”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 69–87, 2025, doi: 10.17798/bitlisfen.1534686.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS