Research Article
BibTex RIS Cite

Fonksiyonel C70 Fullerenlerde Florokinolon Antibiyotik Adsorpsiyonu: Adsorban Uygulamalarına İlişkin Hesaplamalı Bir Bakış

Year 2025, Volume: 14 Issue: 1, 385 - 397, 26.03.2025
https://doi.org/10.17798/bitlisfen.1592320

Abstract

Fonksiyonel (Ca-, Fe-, Mg- ve Zn katkılı) C70 fullerenlerinde florokinolon (FQ) adsorpsiyonu ilk kez yoğunluk fonksiyonel teorisi (DFT) ile araştırıldı. Mg, Ca, Fe ve Zn katkılarının FQ'ya duyarlılığı arttırdığı bulundu. FQ adsorpsiyonundan sonra fonksiyonel C70 fullerenlerinin adsorpsiyon enerjileri 23 – 37 kcal.mol-1 aralığında bulundu. FQ adsorpsiyonundan sonra UV-Vis spektrumları Ca- ve Fe katkılı C70 fullerenlerinde kırmızıya kayma gösterirken, Mg- ve Zn katkılı C70 fullerenlerinde maviye kayma gösterdi. FQ adsorpsiyonu, Fe katkılı C70 fullerenindeki LUMO'ları önemli ölçüde düşürdü. Fe katkılı C70 fulleren ayrıca FQ adsorpsiyonundan sonra bant aralığı enerjisinde önemli bir azalmaya neden oldu. Böylece, Fe dopingi elektriksel iletkenliği önemli ölçüde artırarak FQ antibiyotiğinin C70 fulleren üzerinde tespit edilmesini sağladı. Sonuçlar, Fe katkılı C70 fullereninin FQ antibiyotiği için uygun bir adsorban olabileceğini ortaya koydu.

References

  • Y. Xiang et al., “Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms,” Sci. Total Environ., vol. 709, p. 136079, Mar. 2020.
  • S.-H. Chang, C.-C. Lu, C.-W. Lin, K.-S. Wang, M.-W. Lee, and S.-H. Liu, “Waste expanded polystyrene modified with H2SO4/biodegradable chelating agent for reuse: As a highly efficient adsorbent to remove fluoroquinolone antibiotic from water,” Chemosphere, vol. 288, p. 132619, Feb. 2022.
  • X. Liu, S. Lu, W. Guo, B. Xi, and W. Wang, “Antibiotics in the aquatic environments: A review of lakes, China,” Sci. Total Environ., vol. 627, pp. 1195–1208, Jun. 2018.
  • X. Chi et al., “Influent characteristics affect biodiesel production from waste sludge in biological wastewater treatment systems,” Int. Biodeterior. Biodegradation, vol. 132, pp. 226–235, Aug. 2018.
  • X. Van Doorslaer, J. Dewulf, H. Van Langenhove, and K. Demeestere, “Fluoroquinolone antibiotics: An emerging class of environmental micropollutants,” Sci. Total Environ., vol. 500–501, pp. 250–269, Dec. 2014.
  • J. Kurasam, P. Sihag, P. K. Mandal, and S. Sarkar, “Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India,” Chemosphere, vol. 211, pp. 817–825, Nov. 2018.
  • S. A. C. Carabineiro, T. Thavorn-Amornsri, M. F. R. Pereira, and J. L. Figueiredo, “Adsorption of ciprofloxacin on surface-modified carbon materials,” Water Res., vol. 45, no. 15, pp. 4583–4591, 2011.
  • Q. Wu, Z. Li, H. Hong, K. Yin, and L. Tie, “Adsorption and intercalation of ciprofloxacin on montmorillonite,” Appl. Clay Sci., vol. 50, no. 2, pp. 204–211, Oct. 2010.
  • M. E. Peñafiel, J. M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, and M. P. Ormad, “Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon,” Sci. Total Environ., vol. 750, p. 141498, Jan. 2021.
  • X. Peng, F. Hu, T. Zhang, F. Qiu, and H. Dai, “Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study,” Bioresour. Technol., vol. 249, pp. 924–934, Feb. 2018.
  • E. S. Mirkamali, R. Ahmadi, K. Kalateh, and G. Zarei, “Adsorption of melphalan anticancer drug on the surface of fullerene (C-24): a comprehensive DFT study,” NANOMEDICINE J., vol. 6, no. 2, pp. 112–119, 2019.
  • L. Zhang, Y.-L. Ye, X.-H. Li, J.-H. Chen, and W.-M. Sun, “On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea,” J. Mol. Liq., vol. 342, p. 117533, Nov. 2021.
  • C. Parlak and Ö. Alver, “A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes,” Chem. Phys. Lett., vol. 678, pp. 85–90, 2017.
  • S. Bagheri Novir and M. R. Aram, “Quantum mechanical simulation of Chloroquine drug interaction with C60 fullerene for treatment of COVID-19,” Chem. Phys. Lett., vol. 757, p. 137869, Oct. 2020.
  • F. Nattagh, S. Hosseini, and M. D. Esrafili, “Effects of B and N doping/codoping on the adsorption behavior of C60 fullerene towards aspirin: A DFT investigation,” J. Mol. Liq., vol. 342, p. 117459, Nov. 2021.
  • İ. Muz, F. Göktaş, and M. Kurban, “A density functional theory study on favipiravir drug interaction with BN-doped C60 heterofullerene,” Phys. E Low-dimensional Syst. Nanostructures, vol. 135, p. 114950, Jan. 2022.
  • İ. Muz and M. Kurban, “A first-principles evaluation on the interaction of 1,3,4-oxadiazole with pristine and B-, Al-, Ga-doped C60 fullerenes,” J. Mol. Liq., vol. 335, p. 116181, 2021.
  • İ. Muz, “Enhanced adsorption of fluoroquinolone antibiotic on the surface of the Mg-, Ca-, Fe- and Zn-doped C60 fullerenes: DFT and TD-DFT approach,” Mater. Today Commun., vol. 31, p. 103798, Jun. 2022.
  • W. Li and T. Zhao, “Hydroxyurea anticancer drug adsorption on the pristine and doped C70 fullerene as potential carriers for drug delivery,” J. Mol. Liq., vol. 340, p. 117226, Oct. 2021.
  • S. Onsori and S. Montazeri, “Pyrazinamide Drug Adsorption on the Pristine and Doped C70 Fullerenes: A DFT/TDDFT Study,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 11, pp. 4222–4235, Nov. 2021.
  • A. S. Ghasemi, F. Ashrafi, S. A. Babanejad, and A. Elyasi, “Study of the Physicochemical Properties of Anti-Cancer Drug Gemcitabine on the Surface of Al Doped C60 and C70 Fullerenes: A DFT Computation,” J. Struct. Chem., vol. 60, no. 1, pp. 13–19, Jan. 2019.
  • W. Liu, J. Wei, and Y. Chen, “Electrospun poly(L-lactide) nanofibers loaded with paclitaxel and water-soluble fullerenes for drug delivery and bioimaging,” New J. Chem., vol. 38, no. 12, pp. 6223–6229, Nov. 2014.
  • M. K. Kiani, A. S. Ghasemi, and F. Ravari, “Theoretical study on carbonaceous materials as high efficient carriers for crizotinib drug in liquid water by density functional theory approach,” Struct. Chem., vol. 31, no. 4, pp. 1553–1561, Aug. 2020.
  • Y. Yang, A. Sun, and W. Gu, “Sensing behavior of pristine and doped C70 fullerenes to mercaptopurine drug: a DFT/TDDFT investigation,” Struct. Chem., vol. 32, no. 1, pp. 457–468, Feb. 2021.
  • S. Onsori and S. Montazeri, “Pyrazinamide Drug Adsorption on the Pristine and Doped C70 Fullerenes: A DFT/TDDFT Study,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 11, pp. 4222–4235, Nov. 2021.
  • A. S. Ghasemi, F. Ashrafi, S. A. Babanejad, and A. Elyasi, “Study of the Physicochemical Properties of Anti-Cancer Drug Gemcitabine on the Surface of Al Doped C60 and C70 Fullerenes: A DFT Computation,” J. Struct. Chem., vol. 60, no. 1, pp. 13–19, 2019.
  • E. Alipour, S. Maleki, N. Razavipour, N. Hajali, and S. Jahani, “Identification of amphetamine as a stimulant drug by pristine and doped C70 fullerenes: a DFT/TDDFT investigation,” J. Mol. Model., vol. 27, no. 6, p. 169, Jun. 2021.
  • M. Özcan, A. K. Havare, İ. Dervişoğlu, and Z. Yegingil, “DFT-based simulation for the semiconductor behavior of XGeCl3 (X=K, Rb) halide perovskites under hydrostatic pressure,” Phys. Scr., vol. 99, no. 10, p. 105914, Sep. 2024, doi: 10.1088/1402-4896/AD7243.
  • M. J. Frisch et al., “Gaussian 09, Revision E.01,” 2009.
  • A. D. Becke, “A new mixing of hatree-fock and local density functional theories,” J. Chem. Phys., vol. 98, no. 2, pp. 1372–1377, Jan. 1993.
  • S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the Damping Function in Dispersion Corrected Density Functional Theory,” J. Comput. Chem., vol. 32, no. 7, pp. 1456–1465, May 2011.
  • N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, “cclib: A library for package-independent computational chemistry algorithms,” J. Comput. Chem., vol. 29, no. 5, pp. 839–845, 2008.
  • T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no. 1–6, pp. 104–113, Jan. 1934.
  • T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem., vol. 33, no. 5, pp. 580–592, 2012.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, 1996.
  • T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., vol. 393, no. 1, pp. 51–57, 2004.

Fluoroquinolone Antibiotic Adsorption on the Functional C70 Fullerenes: A Computational Insight on Adsorbent Applications

Year 2025, Volume: 14 Issue: 1, 385 - 397, 26.03.2025
https://doi.org/10.17798/bitlisfen.1592320

Abstract

Fluoroquinolone (FQ) adsorption on functional (Ca-, Fe-, Mg- and Zn-doped) C70 fullerenes was investigated for the first time by density functional theory (DFT). Mg, Ca, Fe, and Zn doping were found to enhance sensitivity to the FQ. The adsorption energies of functional C70 fullerenes after the FQ adsorption were found in the range of 23 – 37 kcal.mol-1. The UV-Vis spectra after the FQ adsorption showed a red shift in Ca- and Fe-doped C70 fullerenes but indicated a blue shift in Mg- and Zn-doped C70 fullerenes. The FQ adsorption significantly lowered the LUMOs in the Fe-doped C70 fullerene. The Fe-doped C70 fullerene also caused a notable decrease in band gap energy after the FQ adsorption. Thus, Fe doping significantly increased the electrical conductivity, enabling the detection of the FQ antibiotic on C70 fullerene. The results revealed that Fe-doped C70 fullerene may be a suitable adsorbent for the FQ antibiotic.

Ethical Statement

The study is complied with research and publication ethics.

Thanks

The numerical calculations reported were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Centre (TRUBA resources), Türkiye.

References

  • Y. Xiang et al., “Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms,” Sci. Total Environ., vol. 709, p. 136079, Mar. 2020.
  • S.-H. Chang, C.-C. Lu, C.-W. Lin, K.-S. Wang, M.-W. Lee, and S.-H. Liu, “Waste expanded polystyrene modified with H2SO4/biodegradable chelating agent for reuse: As a highly efficient adsorbent to remove fluoroquinolone antibiotic from water,” Chemosphere, vol. 288, p. 132619, Feb. 2022.
  • X. Liu, S. Lu, W. Guo, B. Xi, and W. Wang, “Antibiotics in the aquatic environments: A review of lakes, China,” Sci. Total Environ., vol. 627, pp. 1195–1208, Jun. 2018.
  • X. Chi et al., “Influent characteristics affect biodiesel production from waste sludge in biological wastewater treatment systems,” Int. Biodeterior. Biodegradation, vol. 132, pp. 226–235, Aug. 2018.
  • X. Van Doorslaer, J. Dewulf, H. Van Langenhove, and K. Demeestere, “Fluoroquinolone antibiotics: An emerging class of environmental micropollutants,” Sci. Total Environ., vol. 500–501, pp. 250–269, Dec. 2014.
  • J. Kurasam, P. Sihag, P. K. Mandal, and S. Sarkar, “Presence of fluoroquinolone resistance with persistent occurrence of gyrA gene mutations in a municipal wastewater treatment plant in India,” Chemosphere, vol. 211, pp. 817–825, Nov. 2018.
  • S. A. C. Carabineiro, T. Thavorn-Amornsri, M. F. R. Pereira, and J. L. Figueiredo, “Adsorption of ciprofloxacin on surface-modified carbon materials,” Water Res., vol. 45, no. 15, pp. 4583–4591, 2011.
  • Q. Wu, Z. Li, H. Hong, K. Yin, and L. Tie, “Adsorption and intercalation of ciprofloxacin on montmorillonite,” Appl. Clay Sci., vol. 50, no. 2, pp. 204–211, Oct. 2010.
  • M. E. Peñafiel, J. M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, and M. P. Ormad, “Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon,” Sci. Total Environ., vol. 750, p. 141498, Jan. 2021.
  • X. Peng, F. Hu, T. Zhang, F. Qiu, and H. Dai, “Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study,” Bioresour. Technol., vol. 249, pp. 924–934, Feb. 2018.
  • E. S. Mirkamali, R. Ahmadi, K. Kalateh, and G. Zarei, “Adsorption of melphalan anticancer drug on the surface of fullerene (C-24): a comprehensive DFT study,” NANOMEDICINE J., vol. 6, no. 2, pp. 112–119, 2019.
  • L. Zhang, Y.-L. Ye, X.-H. Li, J.-H. Chen, and W.-M. Sun, “On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea,” J. Mol. Liq., vol. 342, p. 117533, Nov. 2021.
  • C. Parlak and Ö. Alver, “A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes,” Chem. Phys. Lett., vol. 678, pp. 85–90, 2017.
  • S. Bagheri Novir and M. R. Aram, “Quantum mechanical simulation of Chloroquine drug interaction with C60 fullerene for treatment of COVID-19,” Chem. Phys. Lett., vol. 757, p. 137869, Oct. 2020.
  • F. Nattagh, S. Hosseini, and M. D. Esrafili, “Effects of B and N doping/codoping on the adsorption behavior of C60 fullerene towards aspirin: A DFT investigation,” J. Mol. Liq., vol. 342, p. 117459, Nov. 2021.
  • İ. Muz, F. Göktaş, and M. Kurban, “A density functional theory study on favipiravir drug interaction with BN-doped C60 heterofullerene,” Phys. E Low-dimensional Syst. Nanostructures, vol. 135, p. 114950, Jan. 2022.
  • İ. Muz and M. Kurban, “A first-principles evaluation on the interaction of 1,3,4-oxadiazole with pristine and B-, Al-, Ga-doped C60 fullerenes,” J. Mol. Liq., vol. 335, p. 116181, 2021.
  • İ. Muz, “Enhanced adsorption of fluoroquinolone antibiotic on the surface of the Mg-, Ca-, Fe- and Zn-doped C60 fullerenes: DFT and TD-DFT approach,” Mater. Today Commun., vol. 31, p. 103798, Jun. 2022.
  • W. Li and T. Zhao, “Hydroxyurea anticancer drug adsorption on the pristine and doped C70 fullerene as potential carriers for drug delivery,” J. Mol. Liq., vol. 340, p. 117226, Oct. 2021.
  • S. Onsori and S. Montazeri, “Pyrazinamide Drug Adsorption on the Pristine and Doped C70 Fullerenes: A DFT/TDDFT Study,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 11, pp. 4222–4235, Nov. 2021.
  • A. S. Ghasemi, F. Ashrafi, S. A. Babanejad, and A. Elyasi, “Study of the Physicochemical Properties of Anti-Cancer Drug Gemcitabine on the Surface of Al Doped C60 and C70 Fullerenes: A DFT Computation,” J. Struct. Chem., vol. 60, no. 1, pp. 13–19, Jan. 2019.
  • W. Liu, J. Wei, and Y. Chen, “Electrospun poly(L-lactide) nanofibers loaded with paclitaxel and water-soluble fullerenes for drug delivery and bioimaging,” New J. Chem., vol. 38, no. 12, pp. 6223–6229, Nov. 2014.
  • M. K. Kiani, A. S. Ghasemi, and F. Ravari, “Theoretical study on carbonaceous materials as high efficient carriers for crizotinib drug in liquid water by density functional theory approach,” Struct. Chem., vol. 31, no. 4, pp. 1553–1561, Aug. 2020.
  • Y. Yang, A. Sun, and W. Gu, “Sensing behavior of pristine and doped C70 fullerenes to mercaptopurine drug: a DFT/TDDFT investigation,” Struct. Chem., vol. 32, no. 1, pp. 457–468, Feb. 2021.
  • S. Onsori and S. Montazeri, “Pyrazinamide Drug Adsorption on the Pristine and Doped C70 Fullerenes: A DFT/TDDFT Study,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 11, pp. 4222–4235, Nov. 2021.
  • A. S. Ghasemi, F. Ashrafi, S. A. Babanejad, and A. Elyasi, “Study of the Physicochemical Properties of Anti-Cancer Drug Gemcitabine on the Surface of Al Doped C60 and C70 Fullerenes: A DFT Computation,” J. Struct. Chem., vol. 60, no. 1, pp. 13–19, 2019.
  • E. Alipour, S. Maleki, N. Razavipour, N. Hajali, and S. Jahani, “Identification of amphetamine as a stimulant drug by pristine and doped C70 fullerenes: a DFT/TDDFT investigation,” J. Mol. Model., vol. 27, no. 6, p. 169, Jun. 2021.
  • M. Özcan, A. K. Havare, İ. Dervişoğlu, and Z. Yegingil, “DFT-based simulation for the semiconductor behavior of XGeCl3 (X=K, Rb) halide perovskites under hydrostatic pressure,” Phys. Scr., vol. 99, no. 10, p. 105914, Sep. 2024, doi: 10.1088/1402-4896/AD7243.
  • M. J. Frisch et al., “Gaussian 09, Revision E.01,” 2009.
  • A. D. Becke, “A new mixing of hatree-fock and local density functional theories,” J. Chem. Phys., vol. 98, no. 2, pp. 1372–1377, Jan. 1993.
  • S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the Damping Function in Dispersion Corrected Density Functional Theory,” J. Comput. Chem., vol. 32, no. 7, pp. 1456–1465, May 2011.
  • N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, “cclib: A library for package-independent computational chemistry algorithms,” J. Comput. Chem., vol. 29, no. 5, pp. 839–845, 2008.
  • T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no. 1–6, pp. 104–113, Jan. 1934.
  • T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem., vol. 33, no. 5, pp. 580–592, 2012.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, 1996.
  • T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., vol. 393, no. 1, pp. 51–57, 2004.
There are 36 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics
Journal Section Research Article
Authors

İskender Muz 0000-0002-6882-5119

Publication Date March 26, 2025
Submission Date November 27, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE İ. Muz, “Fluoroquinolone Antibiotic Adsorption on the Functional C70 Fullerenes: A Computational Insight on Adsorbent Applications”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 385–397, 2025, doi: 10.17798/bitlisfen.1592320.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS