Research Article
BibTex RIS Cite

Study of w+jet cross-sections at Next-To-Leading Order at Future Circiullar Collider at √s=100 TeV

Year 2025, Volume: 14 Issue: 1, 481 - 493, 26.03.2025

Abstract

This study provides a detailed investigation of W+jets production in proton-proton collisions at √s=100 TeV, focusing on the comparison of leading order and next-to-leading order cross-sections. By employing the UNLOPS algorithm, a unified framework was established to improve the accuracy and stability of theoretical predictions, particularly in the context of higher jet multiplicities. The k-factor, a critical metric for quantifying the impact of higher-order corrections, highlighted the substantial contributions of next-to-leading order processes compared to leading order, with a calculated value of 2.501. This value underscores the necessity of incorporating next-to-leading order corrections to achieve precise and reliable predictions in collider physics. The findings indicate that W⁺ cross-sections are consistently higher than W⁻ cross-sections. Additionally, the differential cross-sections decrease as jet multiplicity increases, aligning with theoretical expectations.
This work emphasizes the importance of incorporating next-to-leading order corrections for future collider experiments, particularly for facilities like the future circular collider. The results provide a strong foundation for benchmarking theoretical predictions against experimental data and for guiding the optimization of next-generation colliders. Furthermore, the study highlights the versatility and robustness of the UNLOPS algorithm in addressing the challenges of high-energy jet dynamics, offering valuable insights into W+jets processes and their role in advancing our understanding of Quantum Chromodynamics.

Ethical Statement

The study is complied with research and publication ethics.

References

  • K. Öcalan, “Higher-order differential cross section calculation for the associated production of a W boson and jets in the electron decay channel at a center-of-mass energy of 13 TeV in proton-proton collisions,” Turk J Phys, vol. 43, pp. 156–166, 2019.
  • The ATLAS Collaboration, “Study of jets produced in association with a W boson in pp collisions at √s = 7 TeV with the ATLAS detector,” Phys.Rev.D 85 (2012) 092002.
  • J. M. Campbell, J. W. Huston, and W. J. Stirling, “Hard Interactions of Quarks and Gluons: a Primer for LHC Physics,” Reports on Progress in Physics, vol. 70, no. 1, pp. 89–193, Jan. 2007. [Online]. Available: https://arxiv.org/abs/hep-ph/0611148
  • [4K. Geiger and B. Müller, “QCD Evolution Equations for High Energy Partons in Nuclear Matter,” Physical Review D, vol. 50, no. 1, pp. 337–357, Jul. 1994. [Online]. Available: https://doi.org/10.1103/PhysRevD.50.337
  • M. Benedikt et al., “Future Circular Collider Study. Volume 3: The Hadron Collider (FCC-hh) Conceptual Design Report,” Eur. Phys. J. ST, vol. 228, no. 4, pp. 755–1107, 2019.
  • M. Benedikt and F. Zimmermann, Future Circular Collider Study. Volume 2: The Lepton Collider, CERN-ACC-2018-0057, CERN, Geneva, Switzerland, 2018. [Online]. Available: https://cds.cern.ch/record/2651299
  • M. Mangano et al., Future Circular Collider Study. Volume 1: Physics Opportunities, CERN-ACC-2018-0056, CERN, Geneva, Switzerland, 2018. [Online]. Available: https://cds.cern.ch/record/2651305
  • L. Lönnblad and S. Prestel, “Merging multi-leg NLO matrix elements with parton showers,” Journal of High Energy Physics, vol. 2013, no. 3, p. 166, 2013.
  • J. Alwalla, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP, vol. 07, p. 079, 2014.
  • T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,” Computer Physics Communications, vol. 191, pp. 159–177, 2015.
  • R. Frederix and T. Moskalets, “Five-flavour scheme predictions for tt ̅ bb ̅ at next-to-leading order accuracy,” European Physical Journal C, vol. 84, no. 7, Article no. 763, Jul. 2024. Available: arXiv:2403.14419
  • S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, “QCD matrix elements + parton showers: The NLO case,” Journal of High Energy Physics, vol. 2013, no. 4, p. 27, 2013.
  • K. Hamilton and P. Nason, “Improving NLO-parton shower matched simulations with higher order matrix elements,” arXiv preprint arXiv:1004.1764, 2010. [Online]. Available: https://arxiv.org/abs/1004.1764
  • S. Catani et al., “Matching matrix elements and parton showers in hadronic collisions: The k_T-factorization approach,” Journal of High Energy Physics, vol. 2001, no. 5, p. 25, 2001.
  • M. Rubin, G. P. Salam, and S. Sapeta, “Giant QCD K-factors beyond NLO,” Journal of High Energy Physics, vol. 2010, no. 84, 2010.
  • M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kT jet clustering algorithm,” Journal of High Energy Physics, vol. 2008, no. 4, p. 63, 2008.
  • D. Kim, S. Lee, H. Jung, D. Kim, J. Kim, and J. Song, “A Panoramic Study of K-Factors for 111 Processes at the 14 TeV LHC,” arXiv preprint, arXiv:2402.16276, Feb. 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2402.16276
  • J. Huston, “LO, NLO, LO* and jet algorithms,” Proceedings of the Workshop on RadCor2009, arXiv:1001.2581, Oct. 2010. [Online]. Available: https://doi.org/10.48550/arXiv.1001.2581.

Geleceğin Dairesel Çarpıştırıcısında √s=100 TeV Enerjide W+Jetler'in NLO Seviyesinde Çalışılması

Year 2025, Volume: 14 Issue: 1, 481 - 493, 26.03.2025

Abstract

Bu çalışma, √𝑠 = 100 𝑇𝑒𝑉, enerjisinde proton-proton çarpışmalarında 𝑊 + 𝑗𝑒𝑡𝑠 üretimini detaylı bir şekilde incelemektedir. Çalışma, Leading Order (LO) ve Next-to-Leading Order (NLO) kesitlerinin karşılaştırılmasına odaklanmıştır. UNLOPS algoritmasının kullanımıyla, özellikle daha yüksek jet çoklukları bağlamında teorik tahminlerin doğruluğunu ve kararlılığını artırmak için birleşik bir çerçeve oluşturulmuştur. Yüksek mertebeden düzeltmelerin etkisini nicel olarak değerlendiren kritik bir metrik olan k-faktörü, NLO süreçlerinin LO’ya kıyasla önemli katkılarını vurgulamış ve 2.501 olarak hesaplanmıştır. Bu değer, çarpıştırıcı fiziğinde hassas ve güvenilir tahminlere ulaşmak için NLO düzeltmelerin dahil edilmesinin gerekliliğini ortaya koymaktadır.

Bulgular, proton içindeki parton dağılımlarındaki asimetri nedeniyle W+ kesitlerinin W- kesitlerine kıyasla sürekli olarak daha yüksek olduğunu göstermektedir. Ayrıca, diferansiyel kesitler, artan jet çokluklarıyla birlikte sistematik bir düşüş sergileyerek beklenen faz uzayı baskılanmasını ve yüksek mertebeden yayımların karmaşıklığını yansıtmaktadır.

Bu çalışma, özellikle Future Circular Collider (FCC) gibi tesisler için gelecekteki çarpıştırıcı deneylerinde NLO düzeltmelerin dahil edilmesinin önemini vurgulamaktadır. Sonuçlar, teorik tahminlerin deneysel verilerle karşılaştırılması ve yeni nesil çarpıştırıcıların optimizasyonuna rehberlik edilmesi için sağlam bir temel sunmaktadır. Ayrıca, çalışma, yüksek enerjili jet dinamikleriyle ilgili zorlukların üstesinden gelmede UNLOPS algoritmasının çok yönlülüğünü ve sağlamlığını vurgulamakta; W + jetler süreçleri ve Kuantum Renk Dinamiği (QCD) anlayışımızın ilerletilmesindeki rolü hakkında değerli bilgiler sunmaktadır.

References

  • K. Öcalan, “Higher-order differential cross section calculation for the associated production of a W boson and jets in the electron decay channel at a center-of-mass energy of 13 TeV in proton-proton collisions,” Turk J Phys, vol. 43, pp. 156–166, 2019.
  • The ATLAS Collaboration, “Study of jets produced in association with a W boson in pp collisions at √s = 7 TeV with the ATLAS detector,” Phys.Rev.D 85 (2012) 092002.
  • J. M. Campbell, J. W. Huston, and W. J. Stirling, “Hard Interactions of Quarks and Gluons: a Primer for LHC Physics,” Reports on Progress in Physics, vol. 70, no. 1, pp. 89–193, Jan. 2007. [Online]. Available: https://arxiv.org/abs/hep-ph/0611148
  • [4K. Geiger and B. Müller, “QCD Evolution Equations for High Energy Partons in Nuclear Matter,” Physical Review D, vol. 50, no. 1, pp. 337–357, Jul. 1994. [Online]. Available: https://doi.org/10.1103/PhysRevD.50.337
  • M. Benedikt et al., “Future Circular Collider Study. Volume 3: The Hadron Collider (FCC-hh) Conceptual Design Report,” Eur. Phys. J. ST, vol. 228, no. 4, pp. 755–1107, 2019.
  • M. Benedikt and F. Zimmermann, Future Circular Collider Study. Volume 2: The Lepton Collider, CERN-ACC-2018-0057, CERN, Geneva, Switzerland, 2018. [Online]. Available: https://cds.cern.ch/record/2651299
  • M. Mangano et al., Future Circular Collider Study. Volume 1: Physics Opportunities, CERN-ACC-2018-0056, CERN, Geneva, Switzerland, 2018. [Online]. Available: https://cds.cern.ch/record/2651305
  • L. Lönnblad and S. Prestel, “Merging multi-leg NLO matrix elements with parton showers,” Journal of High Energy Physics, vol. 2013, no. 3, p. 166, 2013.
  • J. Alwalla, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP, vol. 07, p. 079, 2014.
  • T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,” Computer Physics Communications, vol. 191, pp. 159–177, 2015.
  • R. Frederix and T. Moskalets, “Five-flavour scheme predictions for tt ̅ bb ̅ at next-to-leading order accuracy,” European Physical Journal C, vol. 84, no. 7, Article no. 763, Jul. 2024. Available: arXiv:2403.14419
  • S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, “QCD matrix elements + parton showers: The NLO case,” Journal of High Energy Physics, vol. 2013, no. 4, p. 27, 2013.
  • K. Hamilton and P. Nason, “Improving NLO-parton shower matched simulations with higher order matrix elements,” arXiv preprint arXiv:1004.1764, 2010. [Online]. Available: https://arxiv.org/abs/1004.1764
  • S. Catani et al., “Matching matrix elements and parton showers in hadronic collisions: The k_T-factorization approach,” Journal of High Energy Physics, vol. 2001, no. 5, p. 25, 2001.
  • M. Rubin, G. P. Salam, and S. Sapeta, “Giant QCD K-factors beyond NLO,” Journal of High Energy Physics, vol. 2010, no. 84, 2010.
  • M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kT jet clustering algorithm,” Journal of High Energy Physics, vol. 2008, no. 4, p. 63, 2008.
  • D. Kim, S. Lee, H. Jung, D. Kim, J. Kim, and J. Song, “A Panoramic Study of K-Factors for 111 Processes at the 14 TeV LHC,” arXiv preprint, arXiv:2402.16276, Feb. 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2402.16276
  • J. Huston, “LO, NLO, LO* and jet algorithms,” Proceedings of the Workshop on RadCor2009, arXiv:1001.2581, Oct. 2010. [Online]. Available: https://doi.org/10.48550/arXiv.1001.2581.
There are 18 citations in total.

Details

Primary Language English
Subjects Particle Physics
Journal Section Research Article
Authors

Gökhan Halimoğlu 0000-0002-0419-7723

Sehban Kartal This is me 0000-0002-0491-4219

Publication Date March 26, 2025
Submission Date December 10, 2024
Acceptance Date February 13, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE G. Halimoğlu and S. Kartal, “Study of w+jet cross-sections at Next-To-Leading Order at Future Circiullar Collider at √s=100 TeV”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 481–493, 2025, doi: 10.17798/bitlisfen.1599032.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS