Technical Brief
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 583 - 596, 26.03.2025
https://doi.org/10.17798/bitlisfen.1611514

Abstract

References

  • M. De Oliveira and M. R. Dennis, “Vortex knots in light,” Nature Photonics, vol. 15, pp. 253–256, 2021.
  • O. V. Angelsky, A. Y. Bekshaev, S. G. Hanson, C. Y. Zenkova, I. I. Mokhun, and J. Zheng, “The spin–orbit interactions of structured light,” Frontiers in Physics, vol. 8, p. 114, 2020.
  • H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., “Roadmap on structured light,” Journal of Optics, vol. 19, no. 1, p. 013001, 2016.
  • M. Babiker, V. Lembessis, K. Köksal, and J. Yuan, “Orbital angular momentum of light in optical communication,” in Structured Light for Optical Communication, Elsevier, 2021, pp. 37–76.
  • D. L. Andrews and M. Babiker, The Angular Momentum of Light. Cambridge: Cambridge University Press, 2012.
  • A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Advances in Optics and Photonics, vol. 3, no. 2, pp. 161–204, 2011.
  • Y. S. Kivshar and E. A. Ostrovskaya, “Optical vortices: new tools for scientific and engineering applications,” Optics and Photonics News, vol. 12, p. 11, 2001.
  • J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Physical Review Letters, vol. 90, p. 133901, 2003.
  • G. Indebetouw, “Optical vortices and their propagation,” Journal of Modern Optics, vol. 40, no. 1, pp. 73–87, 1993.
  • J. Wang, “Advances in communications using optical vortices,” Photonics Research, vol. 4, no. B14, 2016.
  • W. Shao, S. Huang, X. Liu, and M. Chen, “Tightly focused optical vortex beam shaping,” Optics Communications, vol. 427, pp. 545–550, 2018.
  • Ş. Suciu, G. A. Bulzan, T. A. Isdrailă, A. M. Pălici, S. Ataman, C. Kusko, and R. Ionicioiu, “High-dimensional quantum gates using vortex beams,” Physical Review A, vol. 108, no. 5, p. 052612, 2023.
  • D. Bacco, D. Cozzolino, B. Da Lio, Y. Ding, K. Rottwitt, and L. K. Oxenløwe, “Multiplexing quantum and classical signals in a single fiber,” in Proc. 22nd Int. Conf. Transparent Optical Networks (ICTON), IEEE, 2020, pp. 1–4.
  • Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities,” Light: Science & Applications, vol. 8, p. 90, 2019.
  • G. Sun, F. Zhang, K. Zhao, and S. Pan, “High-capacity optical data storage using vortex beams,” Journal of Lightwave Technology, vol. 42, pp. 1894–1902, 2024.
  • M. Liu, Y. Lei, L. Yu, X. Fang, Y. Ma, L. Liu, J. Zheng, and P. Gao, “On-chip generation and multiplexing of optical vortices using metasurfaces,” Nanophotonics, vol. 11, pp. 3395–3405, 2022.
  • J. Wu, H. Li, and Y. Li, “Generation of optical vortices using spatial light modulators,” Optical Engineering, vol. 46, no. 1, p. 019701, 2007.
  • Z. Long, H. Hu, X. Ma, Y. Tai, and X. Li, “Chiral light–matter interaction in plasmonic vortex devices,” Journal of Physics D: Applied Physics, vol. 55, no. 43, p. 435105, 2022.
  • G. F. Q. Rosen, “Measurement of orbital angular momentum states using interference,” JOSA B, vol. 40, p. C73, 2023.
  • K. A. Forbes and G. A. Jones, “Quantum coherence of light with orbital angular momentum,” Physical Review A, vol. 103, no. 5, p. 053515, 2021.
  • K. Koksal, M. Babiker, V. Lembessis, and J. Yuan, “Twisted photon transport in inhomogeneous media,” Optics Communications, vol. 490, p. 126907, 2021.
  • M. Babiker, J. Yuan, K. Koksal, and V. Lembessis, “Spin and orbital angular momentum coupling in non-paraxial optical fields,” Optics Communications, vol. 554, p. 130185, 2024.
  • P. Berman, “Angular momentum and the Einstein–de Haas effect,” American Journal of Physics, vol. 78, no. 3, pp. 270–276, 2010.
  • K. J. Carothers, R. A. Norwood, and J. Pyun, “Organic photonics: materials and applications,” Chemistry of Materials, vol. 34, pp. 2531–2542, 2022.
  • F. Tambag, K. Koksal, F. Yildiz, and M. Babiker, “Orbital angular momentum interaction with atomic systems,” Optics Communications, vol. 545, p. 129649, 2023.
  • I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Van Der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nature Physics, vol. 7, pp. 48–51, 2011.

Optical Faraday manipulating longitudinal component of optical vortex beams

Year 2025, Volume: 14 Issue: 1, 583 - 596, 26.03.2025
https://doi.org/10.17798/bitlisfen.1611514

Abstract

In this study, we aim to investigate the novel application of the Optical Faraday effect in manipulating the longitudinal component of optical vortex beams, which are characterized by their unique orbital angular momentum and helical phase structure. The Optical Faraday effect, induced by the interaction of a magnetic field with a specific optical crystal, results in a rotation of the polarization plane of light. This phenomenon is harnessed to exert precise control over the longitudinal component of optical vortex beams, a feature not typically present in conventional light beams. Our theoretical analysis explores the modulation of the longitudinal component, revealing a significant influence on the beam’s polarization characteristics, intensity distribution, and phase characteristics. This manipulation breaks new grounds for increasing the precision of optical systems, with potential applications in advanced optical communication, high-density data storage, and quantum information processing. The findings show that by finely tuning the magnetic field and material properties, it is possible to achieve a new kind of control mechanism over the propagation and interaction of optical vortex beams. This work paves the way for further exploration into the dynamic control of structured light, offering promising prospects for future photonic technologies.

Ethical Statement

The study is complied with research and publication ethics.

Thanks

K.K and F.T. wish to thank Bitlis Eren University for its support.

References

  • M. De Oliveira and M. R. Dennis, “Vortex knots in light,” Nature Photonics, vol. 15, pp. 253–256, 2021.
  • O. V. Angelsky, A. Y. Bekshaev, S. G. Hanson, C. Y. Zenkova, I. I. Mokhun, and J. Zheng, “The spin–orbit interactions of structured light,” Frontiers in Physics, vol. 8, p. 114, 2020.
  • H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., “Roadmap on structured light,” Journal of Optics, vol. 19, no. 1, p. 013001, 2016.
  • M. Babiker, V. Lembessis, K. Köksal, and J. Yuan, “Orbital angular momentum of light in optical communication,” in Structured Light for Optical Communication, Elsevier, 2021, pp. 37–76.
  • D. L. Andrews and M. Babiker, The Angular Momentum of Light. Cambridge: Cambridge University Press, 2012.
  • A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Advances in Optics and Photonics, vol. 3, no. 2, pp. 161–204, 2011.
  • Y. S. Kivshar and E. A. Ostrovskaya, “Optical vortices: new tools for scientific and engineering applications,” Optics and Photonics News, vol. 12, p. 11, 2001.
  • J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Physical Review Letters, vol. 90, p. 133901, 2003.
  • G. Indebetouw, “Optical vortices and their propagation,” Journal of Modern Optics, vol. 40, no. 1, pp. 73–87, 1993.
  • J. Wang, “Advances in communications using optical vortices,” Photonics Research, vol. 4, no. B14, 2016.
  • W. Shao, S. Huang, X. Liu, and M. Chen, “Tightly focused optical vortex beam shaping,” Optics Communications, vol. 427, pp. 545–550, 2018.
  • Ş. Suciu, G. A. Bulzan, T. A. Isdrailă, A. M. Pălici, S. Ataman, C. Kusko, and R. Ionicioiu, “High-dimensional quantum gates using vortex beams,” Physical Review A, vol. 108, no. 5, p. 052612, 2023.
  • D. Bacco, D. Cozzolino, B. Da Lio, Y. Ding, K. Rottwitt, and L. K. Oxenløwe, “Multiplexing quantum and classical signals in a single fiber,” in Proc. 22nd Int. Conf. Transparent Optical Networks (ICTON), IEEE, 2020, pp. 1–4.
  • Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, and X. Yuan, “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities,” Light: Science & Applications, vol. 8, p. 90, 2019.
  • G. Sun, F. Zhang, K. Zhao, and S. Pan, “High-capacity optical data storage using vortex beams,” Journal of Lightwave Technology, vol. 42, pp. 1894–1902, 2024.
  • M. Liu, Y. Lei, L. Yu, X. Fang, Y. Ma, L. Liu, J. Zheng, and P. Gao, “On-chip generation and multiplexing of optical vortices using metasurfaces,” Nanophotonics, vol. 11, pp. 3395–3405, 2022.
  • J. Wu, H. Li, and Y. Li, “Generation of optical vortices using spatial light modulators,” Optical Engineering, vol. 46, no. 1, p. 019701, 2007.
  • Z. Long, H. Hu, X. Ma, Y. Tai, and X. Li, “Chiral light–matter interaction in plasmonic vortex devices,” Journal of Physics D: Applied Physics, vol. 55, no. 43, p. 435105, 2022.
  • G. F. Q. Rosen, “Measurement of orbital angular momentum states using interference,” JOSA B, vol. 40, p. C73, 2023.
  • K. A. Forbes and G. A. Jones, “Quantum coherence of light with orbital angular momentum,” Physical Review A, vol. 103, no. 5, p. 053515, 2021.
  • K. Koksal, M. Babiker, V. Lembessis, and J. Yuan, “Twisted photon transport in inhomogeneous media,” Optics Communications, vol. 490, p. 126907, 2021.
  • M. Babiker, J. Yuan, K. Koksal, and V. Lembessis, “Spin and orbital angular momentum coupling in non-paraxial optical fields,” Optics Communications, vol. 554, p. 130185, 2024.
  • P. Berman, “Angular momentum and the Einstein–de Haas effect,” American Journal of Physics, vol. 78, no. 3, pp. 270–276, 2010.
  • K. J. Carothers, R. A. Norwood, and J. Pyun, “Organic photonics: materials and applications,” Chemistry of Materials, vol. 34, pp. 2531–2542, 2022.
  • F. Tambag, K. Koksal, F. Yildiz, and M. Babiker, “Orbital angular momentum interaction with atomic systems,” Optics Communications, vol. 545, p. 129649, 2023.
  • I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Van Der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nature Physics, vol. 7, pp. 48–51, 2011.
There are 26 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other)
Journal Section Research Article
Authors

Fatma Tambağ 0000-0002-8859-0732

Koray Köksal 0000-0001-8331-9380

Publication Date March 26, 2025
Submission Date January 1, 2025
Acceptance Date February 14, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

IEEE F. Tambağ and K. Köksal, “Optical Faraday manipulating longitudinal component of optical vortex beams”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 583–596, 2025, doi: 10.17798/bitlisfen.1611514.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS