Research Article
BibTex RIS Cite

A Uniformly Convergent Difference Scheme for the Singularly Perturbed Periodic Problem

Year 2025, Volume: 14 Issue: 3, 1348 - 1361, 30.09.2025
https://doi.org/10.17798/bitlisfen.1600715

Abstract

In this article, a novel numerical scheme is suggested to solve periodical boundary value problem for linear first order singularly perturbed equation. This scheme is constructed by the finite difference method on a special non-uniform mesh (Shishkin mesh) using quadrature rules with the remaining terms in integral form. It is proven that the scheme achieves almost first-order convergence on the discrete maximum norm. Finally, two test problems are considered to demonstrate the accuracy and performance of the method.

Ethical Statement

The study is complied with research and publication ethics.

References

  • E. Ait Dads, B. Es-sebbar and L. Lhachimi, “On the behavior of solutions of some periodic differential equations,” Journal of Mathematical Analysis and Applications, vol. 544(1), pp. 1-29, 2025.
  • G. M. Amiraliyev and H. Duru, “A uniformly convergence difference method for the periodical boundary value problem,” Computers & Mathematics with Applications, vol. 46, pp. 695-703, 2003.
  • M. Cakir and D. Arslan, “A new numerical approach for a singularly perturbed problem with two integral boundary conditions,” Computational and Applied Mathematics, vol. 40, pp. 1-17, 2021.
  • M. Cakir and E. Cimen, “A novel uniform numerical approach to solve a singularly perturbed Volterra integro-differential equation,” Computational Mathematics and Mathematical Physics, vol. 63, pp. 1800-1816, 2023.
  • M. Cakir, Y. Ekinci and E. Cimen, “A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer,” Computational and Applied Mathematics, vol. 41, pp. 1-14, 2022.
  • G. F. Carrier, “Singular perturbations and geophysics,” SIAM Review, vol. 12, pp. 175-193, 1970.
  • Z. Cen, “Uniformly convergent second-order difference scheme for a singularly perturbed periodical boundary value problem,” International Journal of Computer Mathematics, vol. 88(1), pp. 196-206, 2011.
  • E. Cimen, “Uniformly convergent numerical method for a singularly perturbed differential difference equation with mixed type,” Bulletin of the Belgian Mathematical Society - Simon Stevin, vol. 27(5), pp. 755-774, 2020.
  • P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, New York: Chapman and Hall/CRC, 2000.
  • J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, rev. ed., Singapore: World Scientific Publishing, 2012.
  • R. E. O’Malley, Introduction to Singular Perturbations, New York: Academic Press, 1974.
  • R. E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, New York: Springer-Verlag, 1991.
  • A. Puvaneswari, A. Ramesh Babu and T. Valanarasu, “Cubic spline scheme on variable mesh for singularly perturbed periodical boundary value problem,” Novi Sad Journal of Mathematics, vol. 50(1), pp. 157-172, 2020.
  • A. Puvaneswari, T. Valanarasu and A. Ramesh Babu, “A system of singularly perturbed periodic boundary value problem: hybrid difference scheme,” International Journal of Applied and Computational Mathematics, vol. 6, pp. 1-24, 2020.
  • H. G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Berlin: Springer, 2008.
  • J. Singh, N. Kumar and R. Jiwari, “A robust weak Galerkin finite element method for two parameter singularly perturbed parabolic problems on nonuniform meshes,” Journal of Computational Science, vol. 77, pp. 1-15, 2024.
  • Ö. Yapman, G. M. Amiraliyev and I. Amirali, “Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay,” Journal of Computational and Applied Mathematics, vol. 355, pp. 301-309, 2019.
  • Y. Wang, Y. Li, and X. Meng, “An upwind finite volume element method on a Shishkin mesh for singularly perturbed convection-diffusion problems,” Journal of Computational and Applied Mathematics, vol. 438, pp. 1-20, 2024.

Singüler Pertürbe Olmuş Periyodik Problem için Bir Düzgün Yakınsak Fark Şeması

Year 2025, Volume: 14 Issue: 3, 1348 - 1361, 30.09.2025
https://doi.org/10.17798/bitlisfen.1600715

Abstract

Bu çalışmada, birinci mertebeden singüler pertürbe olmuş periyodik sınır değeri problemini çözmek için yeni bir sayısal şema önerilmiştir. Bu şema, kalan terimleri integral formda olan quadratür kuralları kullanılarak düzgün olmayan özel bir şebeke (Shishkin şebeke) üzerinde sonlu farklar yöntemi ile oluşturulmuştur. Şemanın ayrık maksimum normda neredeyse birinci dereceden yakınsamaya ulaştığı kanıtlanmıştır. Yöntemin doğruluğunu ve performansını göstermek için sayısal bir örnek ele alınmıştır.

References

  • E. Ait Dads, B. Es-sebbar and L. Lhachimi, “On the behavior of solutions of some periodic differential equations,” Journal of Mathematical Analysis and Applications, vol. 544(1), pp. 1-29, 2025.
  • G. M. Amiraliyev and H. Duru, “A uniformly convergence difference method for the periodical boundary value problem,” Computers & Mathematics with Applications, vol. 46, pp. 695-703, 2003.
  • M. Cakir and D. Arslan, “A new numerical approach for a singularly perturbed problem with two integral boundary conditions,” Computational and Applied Mathematics, vol. 40, pp. 1-17, 2021.
  • M. Cakir and E. Cimen, “A novel uniform numerical approach to solve a singularly perturbed Volterra integro-differential equation,” Computational Mathematics and Mathematical Physics, vol. 63, pp. 1800-1816, 2023.
  • M. Cakir, Y. Ekinci and E. Cimen, “A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer,” Computational and Applied Mathematics, vol. 41, pp. 1-14, 2022.
  • G. F. Carrier, “Singular perturbations and geophysics,” SIAM Review, vol. 12, pp. 175-193, 1970.
  • Z. Cen, “Uniformly convergent second-order difference scheme for a singularly perturbed periodical boundary value problem,” International Journal of Computer Mathematics, vol. 88(1), pp. 196-206, 2011.
  • E. Cimen, “Uniformly convergent numerical method for a singularly perturbed differential difference equation with mixed type,” Bulletin of the Belgian Mathematical Society - Simon Stevin, vol. 27(5), pp. 755-774, 2020.
  • P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Robust Computational Techniques for Boundary Layers, New York: Chapman and Hall/CRC, 2000.
  • J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, rev. ed., Singapore: World Scientific Publishing, 2012.
  • R. E. O’Malley, Introduction to Singular Perturbations, New York: Academic Press, 1974.
  • R. E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations, New York: Springer-Verlag, 1991.
  • A. Puvaneswari, A. Ramesh Babu and T. Valanarasu, “Cubic spline scheme on variable mesh for singularly perturbed periodical boundary value problem,” Novi Sad Journal of Mathematics, vol. 50(1), pp. 157-172, 2020.
  • A. Puvaneswari, T. Valanarasu and A. Ramesh Babu, “A system of singularly perturbed periodic boundary value problem: hybrid difference scheme,” International Journal of Applied and Computational Mathematics, vol. 6, pp. 1-24, 2020.
  • H. G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Berlin: Springer, 2008.
  • J. Singh, N. Kumar and R. Jiwari, “A robust weak Galerkin finite element method for two parameter singularly perturbed parabolic problems on nonuniform meshes,” Journal of Computational Science, vol. 77, pp. 1-15, 2024.
  • Ö. Yapman, G. M. Amiraliyev and I. Amirali, “Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay,” Journal of Computational and Applied Mathematics, vol. 355, pp. 301-309, 2019.
  • Y. Wang, Y. Li, and X. Meng, “An upwind finite volume element method on a Shishkin mesh for singularly perturbed convection-diffusion problems,” Journal of Computational and Applied Mathematics, vol. 438, pp. 1-20, 2024.
There are 18 citations in total.

Details

Primary Language English
Subjects Numerical Analysis
Journal Section Research Article
Authors

Erkan Cimen 0000-0002-7258-192X

Publication Date September 30, 2025
Submission Date December 13, 2024
Acceptance Date August 22, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE E. Cimen, “A Uniformly Convergent Difference Scheme for the Singularly Perturbed Periodic Problem”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1348–1361, 2025, doi: 10.17798/bitlisfen.1600715.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS