Determination of Enzyme Inhibitory and Antioxidant Activities of Selected Oak Galls
Year 2025,
Volume: 14 Issue: 3, 1487 - 1503, 30.09.2025
Nesrin Haşimi
,
Merve Doğan Abdioğlu
,
Mehmet Boğa
Abstract
In this study, the enzyme inhibition and antioxidant activities of methanol extracts obtained from galls induced by Andricus quercustozae and Andricus cecconii on Quercus brantii Lindley. and Andricus quercusramuli on Quercus infectoria Oliver were investigated.
The enzyme inhibition activity was assessed using spectrophotometric methods for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and urease inhibition. The total phenolic and flavonoid contents of the extracts were quantified as gallic acid and quercetin equivalents, respectively. Antioxidant activity was evaluated using three distinct assays: DPPH free radical scavenging, ABTS cation radical scavenging, and CUPRAC.
Regarding cholinesterase inhibition, while none of the extracts exhibited activity against AChE, they demonstrated inhibition of BChE, with A. quercustozae gall extract showing the highest activity (31.33 ± 1.25%). Similarly, in tyrosinase inhibition, A. quercustozae gall extract exhibited the most significant effect, with an inhibition rate of 61.16 ± 0.72%. In urease inhibition, A. quercustozae gall extract was the only sample to demonstrate activity (40.98 ± 1.41%), whereas A. quercusramuli and A. cecconii extracts showed no significant effect.
The total phenolic contents of the extracts were higher than their total flavonoid contents, correlating with their strong antioxidant activities. Some extracts exhibited higher antioxidant activity than standard positive controls, further emphasizing their potential as natural antioxidant sources.
Ethical Statement
Ethics committee approval is not required for this study
Supporting Institution
Batman University
Thanks
This study is Merve Doğan Abdioğlu's master's thesis and supported by Batman University Scientific Research Committee with project number .18.001. We thank Dr. Erdem Seven for his assistance in collecting and identifying the samples.
References
-
R. Govaerts and D. G. Frodin, World Checklist and Bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae, and Ticodendraceae). Richmond, UK: Royal Botanic Gardens, Kew, 1998.
-
M. Tataroğlu and Y. Katılmış, “Two new species of oak gall wasp (Hymenoptera: Cynipidae, Cynipini) from Türkiye,” Zootaxa, vol. 5433, no. 4, pp. 559–572, 2024, doi: 10.11646/zootaxa.5433.4.5.
-
G. Csóka, G. N. Stone, and G. Melika, “Biology, ecology and evolution of gall-inducing Cynipidae,” in Biology, Ecology and Evolution of Gall-Inducing Arthropods, A. Raman, C. W. Schaefer, and T. M. Withers, Eds. Enfield, NH: Science Publishers, 2005, pp. 573–642.
-
G. N. Stone, K. Schönrogge, R. J. Atkinson, D. Bellido, and J. Pujade-Villar, “The population biology of oak gall wasps (Hymenoptera: Cynipidae),” Annual Review of Entomology, vol. 47, pp. 633–668, 2002, doi: 10.1146/annurev.ento.47.091201.145247.
-
G. Melika, Gall Wasps of Ukraine. Cynipidae, Vestnik Zoologii, Supplement 21 (1–2), pp. 1–300 & 301–644, 2006.
-
D. C. Oliveira, R. M. S. Isaias, G. W. Fernandes, B. G. Ferreira, R. G. S. Carneiro, and L. Fuzaro, “Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds,” Journal of Insect Physiology, vol. 84, pp. 103–113, 2016, doi: 10.1016/j.jinsphys.2015.11.012.
-
M. Tataroğlu, Ö. Kılınçarslan Aksoy, Y. Katılmış, and R. Mammadov, “Determination of secondary metabolite in galls of some cynipid wasps (Hymenoptera: Cynipidae) and characterization of the phenolic compound,” International Journal of Secondary Metabolite, vol. 10, no. 4, pp. 555–569, 2023, doi: 10.21448/ijsm.1300763.
-
E. O. Martinson, J. D. Hackett, C. A. Machado, and A. E. Arnold, “Metatranscriptome analysis of fig flowers provides insights into potential mechanisms for mutualism stability and gall induction,” PLOS ONE, vol. 10, no. 6, Jun. 2015, doi: 10.1371/journal.pone.0130745.
-
S. Patela, A. Rauf, and C. Khan, “The relevance of folkloric usage of plant galls as medicines: Finding the scientific rationale,” Biomedicine & Pharmacotherapy, vol. 97, pp. 240–247, Jan. 2018, doi: 10.1016/j.biopha.2017.10.111.
-
R. R. Silva, C. P. Ferreira, and A. P. Santos, “Plant Galls: Implications for the Chemical Profile and Biological Activity of Their Host Plants,” Plants, vol. 13, no. 2, p. 256, Jan. 2024, doi: 10.3390/plants13020256.
-
M. Y. Huang, W. D. Huang, H. M. Chou, C. C. Chen, P. J. Chen, Y. T. Chang, and C. M. Yang, “Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata,” BMC Plant Biology, vol. 15, p. 61, 2015, doi: 10.1186/s12870-015-0446-0.
-
N. A. Ali, S. M. Rahman, and M. A. Hossain, “Quercus infectoria Gall Ethanolic Extract Accelerates Wound Healing and Provides Antioxidant Activity,” Frontiers in Pharmacology, vol. 15, p. 1198762, 2024, doi: 10.3389/fphar.2024.1198762.
-
S. S. Xie, X. B. Wang, J. Y. Li, L. Yang, and L. Y. Kong, “Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease,” European Journal of Medicinal Chemistry, vol. 64, pp. 540–553, 2013, doi: 10.1016/j.ejmech.2013.03.051.
-
S. Kumar, R. Singh, and P. Sharma, “Natural acetylcholinesterase inhibitors as potential therapeutics for Alzheimer’s disease: Recent advances,” Phytomedicine, vol. 99, p. 154012, Sep. 2022, doi: 10.1016/j.phymed.2022.154012.
-
G. Tocco, B. Fais, G. Meli, M. Begala, G. Podda, M. B. Fadda, M. Corda, O. A. Attanasi, P. Filippone, and S. Berretta, “PEG-immobilization of cardol and soluble polymer-supported synthesis of some cardol-coumarin derivatives: Preliminary evaluation of their inhibitory activity on mushroom tyrosinase,” Bioorganic & Medicinal Chemistry, vol. 19, no. 1, pp. 36–39, 2009, doi: 10.1016/j.bmcl.2008.11.020.
-
M. H. Lee, J. S. Park, and Y. J. Kim, “Formulation and characterization of Quercus infectoria extract: Anti-tyrosinase activity and cosmetic applications,” Journal of Cosmetic Dermatology, vol. 21, no. 12, pp. 6789–6797, Dec. 2022, doi: 10.1111/jocd.15865.
-
Y. Onado, M. Takido, T. Magaribuchi, and H. Iwasaki, “Effects of 12-sulfodehydroabietic acid monosodium salt (TA2711), a new anti-ulcer agent, on gastric mucosal lesions induced by necrotizing agents and gastric mucosal defensive factors in rats,” Japanese Journal of Pharmacology, vol. 52, pp. 631–638, 1990, doi: 10.1254/jjp.52.631.
-
H. L. T. Mobley, “Helicobacter pylori: Physiology and genetics,” in Helicobacter pylori: Physiology and Genetics, H. L. T. Mobley, G. L. Mendz, and L. Stuart, Eds. Washington, DC: American Society of Microbiology Press, 2001, pp. 97–109, doi: 10.1128/9781555818005.ch16.
-
S. T. S. Hassan and M. Sudomova, “The development of urease inhibitors: What opportunities exist for better treatment of Helicobacter pylori infection in children?,” Children, vol. 4, no. 1, p. 2, 2017, doi: 10.3390/children4010002.
-
Z. Amtul, A. Rahman, R. Siddiqui, and M. Choudhary, “Chemistry and mechanism of urease inhibition,” Current Medicinal Chemistry, vol. 9, pp. 1323–1348, 2002, doi: 10.2174/0929867023369853.
-
M. A. Hemminga and C. M. Duarte, Seagrass Ecology. Cambridge, UK: Cambridge University Press, 2000
-
R. A. Copeland, M. R. Harpel, and P. J. Tummino, “Targeting enzyme inhibitors in drug discovery,” Expert Opinion on Therapeutic Targets, vol. 11, no. 7, pp. 967–978, 2007, doi: 10.1517/14728222.11.7.967.
-
Y. Joo, Y. H. Seo, S. Lee, E. Shin, S. W. Yeon, S. B. Kim, and M. K. Lee, “Antioxidant and Tyrosinase-Inhibitory Activities and Biological Bioactivities of Flavonoid Derivatives from Quercus mongolica Pollen,” Molecules, vol. 30, no. 4, p. 794, Feb. 2025, doi: 10.3390/molecules30040794.
-
A. Braca, C. Sortino, M. Politi, J. Morelli, and J. Mendez, “Antioxidant activity of flavonoids from Licania licaniaeflora,” Journal of Ethnopharmacology, vol. 79, pp. 379–381, 2002, doi: 10.1016/S0378-8741(01)00413-5.
-
Y. Abiy, “Antimicrobial flavonoids from the stem bark of Erythrina burtii,” Fitoterapia, vol. 96, pp. 496–499, 2005, doi: 10.1016/j.fitote.2005.04.006.
-
E. D. Othón-Díaz, J. O. Fimbres-García, M. Flores-Sauceda, A. A. Moreno-Martínez, and A. M. Silva-Espinoza, “Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods,” Antioxidants, vol. 12, no. 4, p. 861, Apr. 2023, doi: 10.3390/antiox12040861.
-
G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, pp. 88–95, 1961, doi: 10.1016/0006-2952(61)90145-9.
-
İ. A. Kıvrak, M. E. Duru, M. Öztürk, N. Mercan, M. Harmandar, and G. Topcu, “Antioxidant, anticholinesterase, and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia,” Food Chemistry, vol. 116, pp. 470–479, 2009, doi: 10.1016/j.foodchem.2009.02.069.
-
V. J. Hearing, “Mammalian monophenol monooxygenase (tyrosinase): Purification, properties, and reactions catalyzed,” Methods in Enzymology, vol. 142, pp. 154–165, 1987, doi: 10.1016/S0076-6879(87)42024-7.
-
H. L. Mobley and R. P. Hausinger, “Microbial ureases: Significance, regulation, and molecular characterization,” Microbiology Reviews, vol. 53, pp. 85–108, 1989, doi: 10.1128/mr.53.1.85-108.1989.
-
M. S. Blois, “Antioxidant determination by the use of a stable free radical,” Nature, vol. 181, pp. 1199–1200, 1958, doi: 10.1038/1811199a0.
-
C. A. Rice-Evans and N. J. Miller, “Total antioxidant status in plasma and body fluids,” Methods in Enzymology, vol. 234, pp. 279–293, 1994, doi: 10.1016/0076-6879(94)34095-1.
-
R. Re, N. Pellegrini, A. Protrggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, pp. 1231–1237, 1999, doi: 10.1016/S0891-5849(98)00315-3.
-
R. Apak, K. Güçlü, M. Özyürek, and S. E. Karademir, “A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method,” Journal of Agricultural and Food Chemistry, vol. 52, pp. 7970–7981, 2004, doi: 10.1021/jf048741x.
-
M. I. N. Moreno, M. I. Isla, A. R. Sampietro, and M. A. Vattuone, “Comparison of the free radical-scavenging activity of propolis from several regions of Argentina,” Journal of Ethnopharmacology, vol. 71, pp. 109–114, 2000, doi: 10.1016/S0378-8741(99)00189-0.
-
K. Slinkard and V. L. Singleton, “Total phenol analyses: Automation and comparison with manual methods,” American Journal of Enology and Viticulture, vol. 28, pp. 49–55, 1977, doi: 10.5344/ajev.1977.28.1.49.
-
H. Kobayashi, T. Ohnishi, R. Nakagawa, and K. Yoshizawa, “The comparative efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate Alzheimer's disease: A Bayesian network meta-analysis,” International Journal of Geriatric Psychiatry, vol. 31, no. 8, pp. 892–904, 2016, doi: 10.1002/gps.4405.
-
P. K. Mukherjee, V. Kumar, M. Mal, and P. J. Houghton, “Acetylcholinesterase inhibitors from plants,” Phytomedicine, vol. 14, pp. 289–300, 2007, doi: 10.1016/j.phymed.2007.02.002.
-
S. Fahimirad, P. Satei, A. Ganji, and H. Abtahi, “Wound healing performance of PVA/PCL-based electrospun nanofiber incorporated green synthesized CuNPs and Quercus infectoria extracts,” Journal of Biomaterials Science, Polymer Edition, vol. 34, pp. 277–301, 2023, doi: 10.1080/09205063.2022.2116209
-
N. A. Kamarudin, N. N. H. Nik Salleh, and S. C. Tan, “Gallotannin-enriched fraction from Quercus infectoria galls as an antioxidant and inhibitory agent against human glioblastoma multiforme,” Plants, vol. 10, p. 2581, 2021, doi: 10.3390/plants10122581.
-
A. Choudhry and N. Akhtar, “Formulation, characterization of Quercus infectoria (Olivier) emulsions, and in vitro, in vivo evaluation as cosmeceutical formulation,” Journal of Cosmetic Dermatology, pp. 1–11, 2023, doi: 10.1111/jocd.15865.
-
A. Nair, T. Balasaravanan, S. Jadhav, V. Mohan, and C. Kumar, “Harnessing the antibacterial activity of Quercus infectoria and Phyllanthus emblica against antibiotic-resistant Salmonella Typhi and Salmonella Enteritidis of poultry origin,” Veterinary World, vol. 13, pp. 1388–1396, 2020, doi: 10.14202/vetworld.2020.1388-1396.
-
H. Khan, M. A. Khan, and I. Hussan, “Enzyme inhibition activities of the extracts from rhizomes of Gloriosa superba Linn (Colchicaceae),” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 22, pp. 722–725, 2007, doi: 10.1080/14756360601164853.
-
M. Lateef, L. Iqbal, N. Fatima, K. Siddiqui, N. Afza, M. Zia-ul-Haq, and M. Ahmad, “Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra,” Pakistan Journal of Pharmaceutical Sciences, vol. 25, pp. 99–102, 2012.
-
N. Kovacevic, Basic Pharmacognosy. Belgrade, Serbia: University of Belgrade, Faculty of Pharmacy, 2000.
-
S. Rakic, S. Petrovic, J. Kukic, M. Jadranin, V. Tešević, and D. Povrenović, “Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia,” Food Chemistry, vol. 104, no. 2, pp. 830–834, 2007, doi: 10.1016/j.foodchem.2007.01.025.
-
H. Shirzad, F. Taji, and M. Rafieian-Kopaei, “Correlation between antioxidant activity of garlic extracts and WEHI-164 fibrosarcoma tumor growth in BALB/c mice,” Journal of Medicinal Food, vol. 14, no. 9, pp. 969–974, 2011, doi: 10.1089/jmf.2011.1594.
-
S. Rahnama, Z. Rabiei, Z. Alibabaei, S. Mokhtari, M. Rafieian-Kopaei, and F. Deris, “Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats,” Neurological Sciences, vol. 35, no. 8, pp. 1305–1310, 2014, doi: 10.1007/s10072-014-1991-2.
-
M. Azmaz, Ö. Kılınçarslan Aksoy, Y. Katılmış, and R. Mammadov, “Investigation of the antioxidant activity and phenolic compounds of Andricus quercustozae gall and host plant (Quercus infectoria),” International Journal of Secondary Metabolite, vol. 7, no. 2, pp. 77–87, 2020, doi: 10.21448/ijsm.674930.
-
N. Mohammadzadeh, M. Ghiasian, J. Faradmal, and D. Dastan, “Quantitative and qualitative analyses of the constituents of the hydroalcoholic extract of Quercus infectoria gall from Kermanshah and evaluation of its antioxidant and antibacterial activities,” Journal of Reports in Pharmaceutical Sciences, vol. 10, pp. 287–293, 2021, doi: 10.4103/jrptps.JRPTPS_36_21.
-
S. Limsuwan, S. Jarukitsakul, A. Issuriya, S. Chusri, N. Joycharat, P. Jaisamut, J. Saising, K. W. N. Jetwanna, and S. P. Voravuthikunchai, “Thai herbal formulation ‘Ya-Pit-Samut-Noi’: Its antibacterial activities, effects on bacterial virulence factors and in vivo acute toxicity,” Journal of Ethnopharmacology, vol. 259, p. 112975, 2020, doi: 10.1016/j.jep.2020.112975.