Research Article
BibTex RIS Cite

Photocatalytic Properties of Chitosan-Coated PESA Spheres Containing Gallium(III) Nitrate: Synthesis and Characterization

Year 2025, Volume: 14 Issue: 3, 1610 - 1624, 30.09.2025
https://doi.org/10.17798/bitlisfen.1687018

Abstract

In this study, the photocatalytic effect of Chitosan (Cht) -Coated polyanetholsulfonic acid (PESA) Spheres Containing Gallium(III) Nitrate (Ga(NO3)3) on methylene blue (MB), a cationic dye, was investigated. The spheres were synthesized by dropwise addition of a chitosan solution to a PESA-Ga(III) solution prepared in a sodium hydroxide (NaOH) solution. It is known that the morphological properties of spheres change in the presence of metal. For this purpose, the surface morphology was determined by Scanning Electron Microscopy (SEM). Functional group analysis was determined using Fourier Transform Infrared (FTIR) Spectrometry. The concentration of Gallium ions remaining in the solution at the end of the reaction was determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis. A UV-C tube lamp was used to photocatalytically degrade the methylene blue dye. The dye degradation changes were then analyzed in a UV-VIS spectrophotometer. Furthermore, Tauc’s formula determined the band gaps with the help of Chitosan-Coated PESA Spheres Containing Ga(NO3)3 (PESA- Ga(III)/Cht) and Chitosan-Coated PESA Spheres (PESA/Cht) UV spectra. It was observed that the photocatalytic effect increased with the incorporation of Ga(NO3)3 into the polymer structure.

References

  • R. Sivakumar and N. Y. Lee, “Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels,” Chemosphere, vol. 286, Jan. 2022, doi: 10.1016/j.chemosphere.2021.131890.
  • M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos, and F. Fava, “Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation,” N Biotechnol, vol. 32, no. 1, pp. 147–156, Jan. 2015, doi: 10.1016/j.nbt.2014.01.001.
  • N. Wang, J. Chen, J. Wang, J. Feng, and W. Yan, “Removal of methylene blue by Polyaniline/TiO2 hydrate: Adsorption kinetic, isotherm and mechanism studies,” Powder Technol, vol. 347, pp. 93–102, Apr. 2019, doi: 10.1016/j.powtec.2019.02.049.
  • F. Mashkoor and A. Nasar, “Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye,” Apr. 15, 2020, Elsevier B.V. doi: 10.1016/j.jmmm.2020.166408.
  • H. N. Hamad and S. Idrus, “Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review,” Feb. 01, 2022, MDPI. doi: 10.3390/polym14040783.
  • S. E. Abo-Neima, M. M. El-Sheekh, M. I. Al-Zaban, and A. I. M. EL-Sayed, “Antibacterial and anti-corona virus (229E) activity of Nigella sativa oil combined with photodynamic therapy based on methylene blue in wound infection: in vitro and in vivo study,” BMC Microbiol, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12866-023-03018-1.
  • K. Evren et al., “A case of peritonitis caused by Wickerhamomyces anomalus (Candida pelliculosa) related to peritoneal dialysis,” Mikrobiyol Bul, vol. 55, no. 4, pp. 665–672, 2021, doi: 10.5578/mb.20219718.
  • A. Krishna Moorthy, B. Govindarajan Rathi, S. P. Shukla, K. Kumar, and V. Shree Bharti, “Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae,” Environ Toxicol Pharmacol, vol. 82, Feb. 2021, doi: 10.1016/j.etap.2020.103552.
  • J. Jiang et al., “Rapid photodegradation of methylene blue by laser-induced plasma,” RSC Adv, vol. 12, no. 33, pp. 21056–21065, Jul. 2022, doi: 10.1039/d2ra03633a.
  • D. Doğan, R. Taş, and M. Can, “Increasing Photocatalytic Stability and Photocatalytic Property of Polyaniline Conductive Polymer,” Iran J Sci Technol Trans A Sci, vol. 44, no. 4, pp. 1025–1037, Aug. 2020, doi: 10.1007/s40995-020-00922-3.
  • H. Bai et al., “Synergistic effects of rare-metal ytterbium doping on TiO2/g-C3N5 heterostructures for enhanced photocatalytic degradation of methylene blue,” Inorg Chem Commun, vol. 175, May 2025, doi: 10.1016/j.inoche.2025.114159.
  • A. Chawla et al., “Recent advances in synthesis methods and surface structure manipulating strategies of copper selenide (CuSe) nanoparticles for photocatalytic environmental and energy applications,” Aug. 01, 2024, Elsevier Ltd. doi: 10.1016/j.jece.2024.113125.
  • S. Sharma et al., “Critical review on the tetracycline degradation using photo-Fenton assisted g-C3N4-based photocatalysts: Modification strategies, reaction parameters, and degradation pathway,” J Environ Chem Eng, vol. 12, no. 3, Jun. 2024, doi: 10.1016/j.jece.2024.112984.
  • Z. Demirkaya et al., “Purification of Textile Dye by Photocatalytic Oxidation Process Using Metal Modified Chitosan Balls,” Journal Of Şura Akademi, vol 8, 2025.
  • A. Nithya, K. Jothivenkatachalam, S. Prabhu, and K. Jeganathan, “Chitosan based nanocomposite materials as photocatalyst - a review,” Materials Science Forum, vol. 781, pp. 79–94, 2014, doi: 10.4028/www.scientific.net/MSF.781.79.
  • A. Buasri, K. Rochanakit, W. Wongvitvichot, U. Masa-Ard, and V. Loryuenyong, “The Application of Calcium Oxide and Magnesium Oxide from Natural Dolomitic Rock for Biodiesel Synthesis,” in Energy Procedia, Elsevier Ltd, Nov. 2015, pp. 562–566. doi: 10.1016/j.egypro.2015.11.534.
  • P. Swarnakar et al., “Silver deposited titanium dioxide thin film for photocatalysis of organic compounds using natural light,” Solar Energy, vol. 88, pp. 242–249, Feb. 2013, doi: 10.1016/j.solener.2012.10.014.
  • M. Alharbi, M. waqas Iqbal, Y. Al-Hadeethi, and M. A. Hussein, “Photocatalytic activity of composite material-based nylon 6/sulfur NPs and reinforced carbon nanotubes,” Diam Relat Mater, vol. 151, Jan. 2025, doi: 10.1016/j.diamond.2024.111859.
  • R. L. Pereira Rocha et al., “Gallium-containing hydroxyapatite as a promising material for photocatalytic performance,” Minerals, vol. 11, no. 12, Dec. 2021, doi: 10.3390/min11121347.
  • K. Pajor, Ł. Pajchel, A. Zgadzaj, U. Piotrowska, and J. Kolmas, “Modifications of hydroxyapatite by gallium and silver ions—physicochemical characterization, cytotoxicity and antibacterial evaluation,” Int J Mol Sci, vol. 21, no. 14, pp. 1–15, Jul. 2020, doi: 10.3390/ijms21145006.
  • V. S. Kujur and S. Singh, “Structural, magnetic, optical and photocatalytic properties of GaFeO3 nanoparticles synthesized via non-aqueous solvent-based sol–gel route,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 20, pp. 17633–17646, Oct. 2020, doi: 10.1007/s10854-020-04318-2.
  • R. Messemeche, Y. Benkhetta, A. Attaf, H. Saidi, M. S. Aida, and O. Ben khetta, “Photocatalytic mechanisms reactions of gallium doped TiO2 thin films synthesized by sol gel (spin coating) in the degradation of methylene blue (MB) dye under sunlight irradiation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 135, no. 5, pp. 2735–2747, Oct. 2022, doi: 10.1007/s11144-022-02288-6.
  • K. Parveen, U. Rafique, I. Jamil, and A. Ashraf, “Photodegradation of Rhodamine B using gallium hybrids as an efficient photocatalyst,” Environ Monit Assess, vol. 195, no. 9, Sep. 2023, doi: 10.1007/s10661-023-11683-y.
  • A. A. Nayl et al., “A novel method for highly effective removal and determination of binary cationic dyes in aqueous media using a cotton-graphene oxide composite,” RSC Adv, vol. 10, no. 13, pp. 7791–7802, Feb. 2020, doi: 10.1039/c9ra09872k.
  • B. Soman, S. Challagulla, S. Payra, S. Dinda, and S. Roy, “Surface morphology and active sites of TiO2 for photoassisted catalysis,” Research on Chemical Intermediates, vol. 44, no. 4, pp. 2261–2273, Apr. 2018, doi: 10.1007/s11164-017-3227-6.
  • R. K. Arya et al., “Polymer Coated Functional Catalysts for Industrial Applications,” May 01, 2023, MDPI. doi: 10.3390/polym15092009.
  • J. M. Blasi, P. J. Weddle, C. Karakaya, D. R. Diercks, and R. J. Kee, “Modeling reaction-diffusion processes within catalyst washcoats: II. Macroscale processes informed by microscale simulations,” 2016.
  • W. Xie et al., “Polydopamine Shell as a Ga3+ Reservoir for Triggering Gallium–Indium Phase Separation in Eutectic Gallium–Indium Nanoalloys,” ACS Nano, vol. 15, no. 10, pp. 16839–16850, Oct. 2021, doi: 10.1021/acsnano.1c07278.
  • M. N. Cardoza-Contreras, A. Vásquez-Gallegos, A. Vidal-Limon, J. M. Romo-Herrera, S. Águila, and O. E. Contreras, “Photocatalytic and antimicrobial properties of Ga doped and Ag doped ZnO nanorods for water treatment,” Catalysts, vol. 9, no. 2, Feb. 2019, doi: 10.3390/catal9020165.
  • Y. Xu, The photoelectronic properties of chalcogenide glass ceramic. Material chemistry. Université de Rennes, 2014.
  • L. L. Zhou, G. Wu, J. Liu, and X. Bin Yu, “Preparation of Ga3+:ZnO quantum dots and the photoelectric properties of sensitized polycrystalline silicon solar cells,” Chemical Papers, vol. 75, no. 2, pp. 805–811, Feb. 2021, doi: 10.1007/s11696-020-01339-3.
  • M. Faqrul and A. Chowdhury, “Unassisted Photocatalytic Overall Pure Water Splitting Using III-Nitride Nanostructures,” 2018.
  • M. S. Akhtar, A. Umar, S. Sood, I. S. Jung, H. H. Hegazy, and H. Algarni, “Rapid growth of TiO2 nanoflowers via low-temperature solution process: Photovoltaic and sensing applications,” Materials, vol. 12, no. 4, Feb. 2019, doi: 10.3390/ma12040566.
  • S. Buapoon, A. Phuruangrat, P. Dumrongrojthanath, T. Thongtem, and S. Thongtem, “Sonochemical Synthesis and Characterization of Ag/ZnO Heterostructure Nanocomposites and their Photocatalytic Efficiencies,” J Electron Mater, vol. 50, no. 8, pp. 4524–4532, Aug. 2021, doi: 10.1007/s11664-021-08985-7.
  • Y. Wang, Y. Feng, J. Jiang, and J. Yao, “Designing of Recyclable Attapulgite for Wastewater Treatments: A Review,” ACS Sustain Chem Eng, vol. 7, no. 2, pp. 1855–1869, Jan. 2019, doi: 10.1021/acssuschemeng.8b05823.
  • M. Nora, A. Bhagaskara, V. Agustisari, A. Lim, H. R. Alfalah, and D. Siswanta, “Fabrication of Polystyrene Sulfonate-Chitosan (PSS-Chitosan) Membrane as Dodecyl Benzene Sulfonate (DBS) Adsorbent in Laundry Wastewater,” Jurnal Kimia Sains dan Aplikasi, vol. 26, no. 1, pp. 19–27, Jan. 2023, doi: 10.14710/jksa.26.1.19-27.
  • Ž. Petrović, M. Ristić, and S. Musić, “The effect of sodium polyanethol sulfonate on the precipitation of zinc oxide,” J Alloys Compd, vol. 694, pp. 1331–1337, 2017, doi: 10.1016/j.jallcom.2016.10.111.
  • M. F. Queiroz, K. R. T. Melo, D. A. Sabry, G. L. Sassaki, and H. A. O. Rocha, “Does the use of chitosan contribute to oxalate kidney stone formation?,” Mar Drugs, vol. 13, no. 1, pp. 141–158, Jan. 2015, doi: 10.3390/md13010141.
  • O. Adewuyi, A. B. Alabi, F. H. Abejide, and F. O. Omoniyi, “Impact of Nitridation on the Structural, Optical, and Morphological Properties of Solvothermally Synthesized Gallium Nitride Nanoparticles,” Mar. 11, 2025. doi: 10.21203/rs.3.rs-6145110/v1.
  • A. K. Mallik, G. Krishnamurthy, W.-C. Shih, P. Pobedinskas, J. D’Haen, and K. Haenen, “ Enhanced etching of GaN with N2 gas addition during CVD diamond growth ,” Functional Diamond, vol. 4, no. 1, Dec. 2024, doi: 10.1080/26941112.2024.2393817.
  • H. J. Bae et al., “High-aspect ratio β-Ga2O3 nanorods via hydrothermal synthesis,” Nanomaterials, vol. 8, no. 8, Aug. 2018, doi: 10.3390/nano8080594.
  • Q. Ruan et al., “Development of ZnO/selenium nanoparticles embedded chitosan-based anti-bacterial wound dressing for potential healing ability and nursing care after peadiatric fracture surgery,” Int Wound J., vol 20, no. 6 pp. 1819-1831. doi: 10.1111/iwj.13947.
  • A. Şenocak, H. Akbaş, and B. İşgör, “NiO Nanoparticles Via Calcination of Dithiocarbamate Pioneers: Characterization and Photocatalytic Activity,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 969–978, Dec. 2024, doi: 10.17798/bitlisfen.1485060.
  • N. N. Bahrudin, “Evaluation of degradation kinetic and photostability of immobilized TiO2/activated carbon bilayer photocatalyst for phenol removal,” Applied Surface Science Advances, vol. 7, Feb. 2022, doi: 10.1016/j.apsadv.2021.100208
There are 44 citations in total.

Details

Primary Language English
Subjects Photochemistry
Journal Section Research Article
Authors

Deniz Doğan 0000-0003-2561-2946

Publication Date September 30, 2025
Submission Date April 29, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE D. Doğan, “Photocatalytic Properties of Chitosan-Coated PESA Spheres Containing Gallium(III) Nitrate: Synthesis and Characterization”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1610–1624, 2025, doi: 10.17798/bitlisfen.1687018.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS