Research Article
BibTex RIS Cite

The Cohesive and Fatigue Damage Mechanics of Cement-Stabilized Soil Composites using New Generation Sustainable Cement

Year 2025, Volume: 14 Issue: 3, 1823 - 1848, 30.09.2025
https://doi.org/10.17798/bitlisfen.1723313

Abstract

In this study, fracture toughness (KIc) and cohesive fracture properties of sandy-clay soils stabilized with low (%2) and high (%10) cement under static and cyclic loading using semicircular (SCB) specimens were investigated by experimental and numerical analysis. Higher KIc values were obtained with samples containing high amounts of cement compared to soils containing low amounts of cement. A significant decrease in KIc value was also observed under cyclic loading compared to monotonic loading test results. Load-crack opening displacement (COD) plots obtained by cyclic loading experiments showed high plastic deformation accumulation before final fracture. Beside these, cohesive and stable critical crack length and the initiation of unstable crack propagation were determined using nonlinear simulations and cohesive fracture analyses of the FRANC2D program. Thus, combined evaluation of the findings from both experimental and numerical studies in this research could lead to improved design strategies for stabilized soil composites by strengthening a comprehensive understanding of fracture mechanics alongside empirical data.

Ethical Statement

The study is complied with research and publication ethics.

Supporting Institution

TÜBİTAK

Thanks

This research article was published within the TÜBİTAK 1001 program and project number 124M468. The author would like to thank TÜBİTAK for this support.

References

  • A.A. Fondjo, E. R., Theron, Ray P. “Stabilization of expansive soils using mechanical and chemical methods: a comprehensive review”. Civ. Eng. Arch., vol. 9, pp. 1295-1308. 2021.
  • U. Zada, J. Arshad, M. Iqbal, S.M Eldin, A. Meshal, R.B Souhila, A. Sultan. “Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities”, Case Studies in Constr. Mater., vol. 18, e01985, 2023.
  • N. Koukouzas, P. Tyrologou, P. Koutsovitis, D. Karapanos, and C. Karkalis, “Soil stabilization.” Handbook of Fly Ash, pp. 475-500, 2022, doi: 10.1016/b978-0-12-817686-3.00004-9.
  • E. Güneri, “Zeolit-Bentonit Karışımlarının Farklı Sıcaklıklar Altında Sıkışma İndisinin Hesaplanmasında Ampirik ve Deneysel Yöntemlerin Karşılaştırılması.” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 36, no. 2, pp. 765-773, 2024, doi: 10.35234/fumbd.1445113.
  • E. Güneri, Determination of the Hydraulic Conductivity Behavior of Seaweed Added Zeolite-Bentonite Mixtures in the Presence of Temperature with Empirical Relationships. Çukurova University Eng. Sci. J., vol.39(3), pp.617-623, 2024.
  • B. Xia, L. Zeng, F. Ji, M., Xie, Z., Hong. “Plasticity role in strength behavior of cement-phosphogypsum stabilized soils”, J. Rock Mech. Geotech. Eng., vol. 14(6), pp. 1977-1988, 2022
  • Z. Yin, P. Wang, and S. Dai, “Microstructures and micromechanics of geomaterials,” J. Zhejiang Univ. Sci. A, vol. 24, pp. 299–302, 2023, doi: 10.1631/jzus.A2300MMG.
  • D. R. Biswal, U. C. Sahoo, and S. R. Dash, “Fatigue Characteristics of Cement-Stabilized Granular Lateritic Soils,” Journal of Transportation Engineering, Part B: Pavements, vol. 146, no. 1, 2019.
  • D. K. Paul and C. T. Gnanendran, “Characterization of lightly stabilized granular base materials using monotonic and cyclic load flexural testing,” J. Mater. Civ. Eng., vol. 28, no. 1, p. 04015074, 2016.
  • M. R. M. Aliha, H. Ziari, B. Mojaradi, and M. J. Sarbijan, “Heterogeneity effects on mixed‐mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen,” Fatigue & Fract. Eng. Mate. & Struct., vol. 43, no. 3, pp. 586–604, 2020, doi: 10.
  • N. Erarslan, Investigation of the tensile-shear failure of asphalt concrete base (ACB) construction materials using a non-linear cohesive crack model and critical crack threshold analysis, Const. and Build. Mater., vol. 364, p. 129901, 2023.
  • N. Mashaan, M. Karim, F. Khodary, N. Saboo, and A. Milad, Bituminous Pavement Reinforcement with Fiber: A Review. CivilEng, vol. 2, no. 3, pp. 599-611, 2021, doi: 10.3390/civileng2030033.
  • H. Ziari, M. R. M. Aliha, E. S. Fard, and M. J. Sarbijan, “Mixed mode I+II fracture parameters and cracking trajectory of heterogeneous multilayer pavement structure containing reflective crack.” Fatigue & Fracture of Engineering Materials & Structures, vol. 45, no. 10, pp. 2958-2977, 2022, doi: 10.1111/ffe.13796.
  • N. Erarslan, D.J.Williams, “Mechanism of rock fatigue damage in terms of fracturing modes”. Int. J. Fatigue, vol. 43, pp. 76-89, 2012.
  • F. Bjørheim, S. C. Siriwardane, and D. Pavlou, “A review of fatigue damage detection and measurement techniques.” International Journal of Fatigue, vol. 154, p. 106556, 2022, doi: 10.1016/j.ijfatigue.2021.106556.
  • M. Aliha, H. reza Karimi, and M. Abedi, “The role of mix design and short glass fiber content on mode-I cracking characteristics of polymer concrete.” Construction and Building Materials, vol. 317, p. 126139, 2022, doi: 10.1016/j.conbuildmat.2021.126139.
  • X. Chen, J. Yuan, Q. Dong, and X. Zhao, “Meso-scale cracking behavior of Cement Treated Base material.” Construction and Building Materials, vol. 239, p. 117823, 2020, doi: 10.1016/j.conbuildmat.2019.117823.
  • C.-H. Chen, C.-S. Chen, and J.-H. Wu, “Fracture toughness analysis on cracked ring disks of anisotropic rock.” Rock Mechanics and Rock Engineering, vol. 41, no. 4, pp. 539-562, 2007, doi: 10.1007/s00603-007-0152-9.
  • N. Erarslan, “Analysing mixed mode (I–II) fracturing of concrete discs including chevron and straight-through notch cracks.” International Journal of Solids and Structures, vol. 167, pp. 79-92, 2019, doi: 10.1016/j.ijsolstr.2019.03.005.
  • M. Aliha, P. Jafari Haghighatpour, and A. Tavana, “Application of asymmetric semi-circular bend test for determining mixed mode I + II fracture toughness of compacted soil material.” Engineering Fracture Mechanics, vol. 262, p. 108268, 2022, doi: 10.1016/j.engfracmech.2022.108268.
  • J.-Z. Zhang and X.-P. Zhou, “Fracture process zone (FPZ) in quasi-brittle materials: Review and new insights from flawed granite subjected to uniaxial stress.” Engineering Fracture Mechanics, vol. 274, p. 108795, 2022, doi: 10.1016/j.engfracmech.2022.108795.
  • QB. Zhang, , K Liu, G.Wu, J. Zhao, Dynamic Deformation, Damage, and Fracture in Geomaterials. In: Voyiadjis, G.Z. (eds) Handbook of Damage Mechanics . Springer, Cham, (2022). https://doi.org/10.1007/978-3-030-60242-0_73
  • W. W. Crockford and D. N. Little, “Tensile Fracture and Fatigue of Cement‐Stabilized Soil.” Journal of Transportation Engineering, vol. 113, no. 5, pp. 520-537, 1987, doi: 10.1061/(asce)0733-947x(1987)113:5(520).
  • J. Davies, “Fracture characteristics of cement-stabilized soils.” Journal of Materials Science, vol. 26, no. 15, pp. 4095-4103, 1991, doi: 10.1007/bf00553494.
  • K. Sobhan and B. M. Das, “Durability of Soil–Cements against Fatigue Fracture.” Journal of Materials in Civil Engineering, vol. 19, no. 1, pp. 26-32, 2007, doi: 10.1061/(asce)0899-1561(2007)19:1(26).
  • H. Takahashi, S. Omori, H. Asada, H. Fukawa, Y. Gotoh, and Y. Morikawa, “Mechanical Properties of Cement-Treated Soil Mixed with Cellulose Nanofibre.” Applied Sciences, vol. 11, no. 14, p. 6425, 2021, doi: 10.3390/app11146425.
  • S. A. Saed, H. R. Karimi, S. M. Rad, M. Aliha, X. Shi, and P. J. Haghighatpour, “Full range I/II fracture behavior of asphalt mixtures containing RAP and rejuvenating agent using two different 3-point bend type configurations.” Construction and Building Materials, vol. 314, p. 125590, 2022, doi: 10.1016/j.conbuildmat.2021.125590.
  • J. Wang, S. Huang, W. Guo, Z. Qiu, and K. Kang, “Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen.” Engineering Fracture Mechanics, vol. 224, p. 106814, 2020, doi: 10.1016/j.engfracmech.2019.106814.
  • J.- ping Zuo, H.- ping Xie, F. Dai, and Y. Ju, “Three-point bending test investigation of the fracture behavior of siltstone after thermal treatment.” International Journal of Rock Mechanics and Mining Sciences, vol. 70, pp. 133-143, 2014, doi: 10.1016/j.ijrmms.2014.04.005.
  • M. R. Mohammad Aliha, H. Ghesmati Kucheki, and M. M. Asadi, “On the use of different diametral compression cracked disc shape specimens for introducing mode III deformation.” Fatigue & Fracture of Engineering Materials & Structures, vol. 44, no. 11, pp. 3135-3151, 2021, doi: 10.1111/ffe.13570.
  • A. Bahmani and S. Nemati, “Fracture resistance of railway ballast rock under tensile and tear loads.” Engineering Solid Mechanics, vol. 9, no. 3, pp. 271-280, 2021, doi: 10.5267/j.esm.2021.3.003.
  • J. He, L. Liu, H. Yang, and M. Aliha, “Using two and three-parameter Weibull statistical model for predicting the loading rate effect on low-temperature fracture toughness of asphalt concrete with the ENDB specimen.” Theoretical and Applied Fracture Mechanics, vol. 121, p. 103471, 2022, doi: 10.1016/j.tafmec.2022.103471.
  • R. Raeisi, F. Rezaie, and M. R. M. Aliha, “Mixed mode I/II and I/III fracture toughness investigation for preplaced aggregate concrete mixtures: Experimental study and theoretical prediction.” Fatigue & Fracture of Engineering Materials & Structures, vol. 47, no. 8, pp. 2873-2887, 2024, doi: 10.1111/ffe.14328.
  • X. Gu, T. Cheng, F. Zhang, and M. R. M. Aliha, “Experimental and theoretical framework for illustrating the dependency of fracture toughness with tensile, bending, and compression loading in asphaltic samples.” Fatigue & Fracture of Engineering Materials & Structures, vol. 46, no. 9, pp. 3321-3341, 2023, doi: 10.1111/ffe.14077.
  • S. R. Mousavi, M. Ghasemi, and M. Dehghani, “Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber.” Engineering Solid Mechanics, vol. 12, no. 1, pp. 17-26, 2024, doi: 10.5267/j.esm.2023.7.006.
  • H. reza Karimi, E. Khedri, M. Aliha, and A. Mousavi, “A comprehensive study on ring shape specimens under compressive and tensile loadings for covering the full range of I+II fracture modes of gypsum material.” International Journal of Rock Mechanics and Mining Sciences, vol. 160, p. 105265, 2022, doi: 10.1016/j.ijrmms.2022.105265.
  • S. Fuan, M. Ke, L. Kanghe, L. Kun, and M. Aliha, “Influence of specimen geometry on mode I fracture toughness of asphalt concrete.” Construction and Building Materials, vol. 276, p. 122181, 2021, doi: 10.1016/j.conbuildmat.2020.122181.
  • N. S. Karamzadeh, M. R. M. Aliha, and H. R. Karimi, “Investigation of the effect of components on tensile strength and mode-I fracture toughness of polymer concrete.” Arabian Journal of Geosciences, vol. 15, no. 13, 2022, doi: 10.1007/s12517-022-10466-y.
  • M. D. Kuruppu and K. P. Chong, “Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen.” Engineering Fracture Mechanics, vol. 91, pp. 133-150, 2012, doi: 10.1016/j.engfracmech.2012.01.013.
  • P. Olivares-Rodríguez, M. Aranda, M. Vázquez-Boza, P. Durand, and J. Reinoso, “Experimental characterization of Mode I fracture toughness of the undisturbed Guadalquivir Blue Marl: Effect of suction.” Theoretical and Applied Fracture Mechanics, vol. 128, p. 104113, 2023, doi: 10.1016/j.tafmec.2023.104113.
  • S. Valente, C. Fidelibus, S. Loew, M. Cravero, G. Iabichino, and F. Barpi, “Analysis of Fracture Mechanics Tests on Opalinus Clay.” Rock Mechanics and Rock Engineering, 2012, doi: 10.1007/s00603-012-0225-2.
  • L. Qiao, J. Liu, X. Li, Q. Li, and J. Xie, “Experimental study on mode I fracture characteristics of compacted bentonite clay.” Engineering Fracture Mechanics, vol. 285, p. 109294, 2023, doi: 10.1016/j.engfracmech.2023.109294.
  • P. Miarka, L. Pan, V. Bílek, S. Seitl, and H. Cifuentés, “Influence of the chevron notch type on the values of fracture energy evaluated on alkali-activated concrete.” Engineering Fracture Mechanics, vol. 236, p. 107209, 2020, doi: 10.1016/j.engfracmech.2020.107209.
  • M.-D. Wei, F. Dai, N.-W. Xu, Y. Liu, and T. Zhao, “A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks.” Engineering Fracture Mechanics, vol. 190, pp. 1-15, 2018, doi: 10.1016/j.engfracmech.2017.11.041.
  • M. Fakhri, F. Yousefian, E. Amoosoltani, M. R. M. Aliha, and F. Berto, “Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete.” Fatigue & Fracture of Engineering Materials & Structures, vol. 44, no. 10, pp. 2659-2673, 2021, doi: 10.1111/ffe.13521.
  • B.Das. Principles of foundation engineering. Ed. Hilda Gowans, Cengage Learning, USA, 2007.
  • M. Rezaeian, P. M. V. Ferreira, and A. Ekinci, “Mechanical behaviour of a compacted well-graded granular material with and without cement.” Soils and Foundations, vol. 59, no. 3, pp. 687-698, 2019, doi: 10.1016/j.sandf.2019.02.006.
  • S. Song, C. Lv, J. Du, and J. Wang, “Correlation analysis between fracture toughness and tensile strength of cement soil based on notched semi-circle bend specimen.” Journal of Adhesion Science and Technology, vol. 38, no. 16, pp. 3047-3062, 2024, doi: 10.1080/01694243.2024.2327723.
  • B. Beriha and U. C. Sahoo, “Fatigue behaviour of cement stabilized materials using dissipated energy.” International Journal of Pavement Research and Technology, vol. 13, no. 4, pp. 434-441, 2020, doi: 10.1007/s42947-020-0274-y.
  • D. R. Biswal, U. C. Sahoo, and S. R. Dash, “Fatigue Characteristics of Cement-Stabilized Granular Lateritic Soils.” Journal of Transportation Engineering, Part B: Pavements, vol. 146, no. 1, p. 04019038, 2020, doi: 10.1061/jpeodx.0000147.
  • M. Preteseille and T. Lenoir, “Mechanical Fatigue of a Stabilized/Treated Soil Tested with Uniaxial and Biaxial Flexural Tests.” Transportation Research Procedia, vol. 14, pp. 1923-1929, 2016, doi: 10.1016/j.trpro.2016.05.159.
  • N. Erarslan, “Feasibility Study of an ASTM Standard in Determining the Mixed-Mode I-II Fracture Toughness of Asphalt Concrete Materials.” Advances in Civil Engineering Materials, vol. 12, no. 1, pp. 218-236, 2023, doi: 10.1520/acem20220107.
  • M. H. Anders, S. E. Laubach, and C. H. Scholz, “Microfractures: A review.” Journal of Structural Geology, vol. 69, pp. 377-394, 2014, doi: 10.1016/j.jsg.2014.05.011.
  • E. Melese, H. Baaj, and S. Tighe, “Fatigue behaviour of reclaimed pavement materials treated with cementitious binders.” Construction and Building Materials, vol. 249, p. 118565, 2020, doi: 10.1016/j.conbuildmat.2020.118565.
  • R. A. Schmidt. A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In ARMA US rock mechanics/Geomechanics symposium (pp. ARMA-80), ARMA1980
  • K. Fang and L. Cui, “Experimental investigation of evolutive mode-I and mode-II fracture behavior of fiber-reinforced cemented paste backfill: Effect of curing temperature and curing time.” Frontiers of Structural and Civil Engineering, vol. 17, no. 2, pp. 256-270, 2023, doi: 10.1007/s11709-022-0924-z.
  • J. Zhang, D. N. Little, J. Grajales, T. You, Y.-R. Kim. Use of Semicircular Bending Test and Cohesive Zone Modeling to Evaluate Fracture Resistance of Stabilized Soils. Transportation Research Record, 2657(1), 67-77, 2019 https://doi.org/10.3141/2657-08
  • N. Erarslan, and M. Aliha. Fracture and Damage Analysis of Cement-Stabilized Fine and Coarse Grain Soils Under Static and Cyclic Loading Using Chevron-Notched SCB Specimen. Fatigue Fract Eng Mater Struct, 48: 2708-2724, 2025, https://doi.org/10.1111/ffe.14598
  • H. Qi, X. Zhang, J. Liu, T. Zhang, G. Lv, L. Cui, Xie, Q. Study on Deformation Characteristics of Low-Highway Subgrade under Traffic Load. Appl. Sci. 2022, 12, 3406. https://doi.org/10.3390/app12073406
  • L. An, X. Zhao, D. Li, L. Yang, P. Li, L. Guo, Wang, L. Cyclic and Post-Cyclic Behaviors of Stabilized Sand-Containing Soft Soil in Coastal Areas. Sustainability 2022, 14, 15017. https://doi.org/10.3390/su142215017
  • P. A., Wawrzynek, A. R. Ingraffea, Interactive finite element analysis of fracture processes: An integrated approach. Theoretical and Applied Fracture Mechanics, 8(2), 137–150, 1987.
There are 61 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering, Fracture Mechanics
Journal Section Research Article
Authors

Nazife Erarslan 0000-0002-5202-9644

Publication Date September 30, 2025
Submission Date June 19, 2025
Acceptance Date September 26, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE N. Erarslan, “The Cohesive and Fatigue Damage Mechanics of Cement-Stabilized Soil Composites using New Generation Sustainable Cement”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1823–1848, 2025, doi: 10.17798/bitlisfen.1723313.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS