Research Article
BibTex RIS Cite

Bulanık Bilişsel Haritalama İle Yalın Dönüşüm Başarı Faktörlerinin Değerlendirilmesi

Year 2022, Volume: 3 Issue: 2, 108 - 119, 30.12.2022

Abstract

Her geçen gün gelişen, değişen ve büyüyen tekstil sektöründe rekabet koşulları güçleşmektedir. Bu süreçte yalın üretim çalışmalarının önemi de sürekli artmaktadır. İşletmelerin teknik bilgi ve donanımları, üst yönetimin desteği, çalışan katılımı gibi konular bu süreçte oldukça büyük önem taşımaktadır. Bunların yanı sıra yalın uygulamaların başarısında kullanılan yöntem ve metotları müşteri ile ilişkilendirme, yalın yaklaşımı tedarikçilere yaymak, eğitim ve öğrenme, gibi çeşitli faktörler yer almaktadır. Bu çalışma ile tekstil sektöründe yalın uygulama-implementasyon başarı faktörleri incelenmiştir. Çalışmada ilk olarak kapsamlı bir literatür çalışması ile yalın başarı faktörleri belirlenmiştir. Kullanılacak yalın başarı faktörlerinin belirlenmesinin ardından bulanık bilişsel haritalama (BBH) yöntemi yardımıyla yalın başarı faktörlerinin yalın dönüşüme etkileri tespit edilmiştir. Sonrasında yalın dönüşümde etkili olan faktörler için öncelik sıralaması ve faktörlerin ağırlıkları analiz edilmiştir.

Thanks

Bu çalışma İstanbul Üniversitesi-Cerrahpaşa, Lisansüstü Eğitim Enstitüsü, Endüstri Mühendisliği bölümünde Doç. Dr. Yusuf Sait Türkan’ın danışmanlığında Duygu Tüylü tarafından hazırlanan yüksek lisans tez çalışmasından yararlanılarak üretilmiştir.

References

  • Anand, T. (2000). A Framework for Evaluating Erp Projects. International Journal of Production Research, 38(17), 4507-4520.
  • Arnoldia, P. (2010). Factors of Successful Implementation of Erp Systems. Economics and Management, 15(8), 691-697.
  • Asan, U., Kutlu, A. C. & Kadaifçi, C. (2011). Analysis of Critical Factors in Energy Service Contracting Using Fuzzy Cognitive Mapping. Proceedings of the 41st International Conference on Computers and Industrial Engineering.
  • Bateman, R. (2009). Public Sector Human Resource Management Reform Across Countries: From Performance Appraisal to Performance Steering. European Journal of International Management, 3(4), 495-511.
  • Karlsson, C. & Åhlstrom, P. (1996). Assessing Changes Towards Lean Production. International Journal of Operations & Production Management, 16(2), 24-41.
  • Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Mach. Studies, 24(1), 65–75.
  • Kottas, T. L., Boutalis, Y. S. & Christodoulou, M. A. (2010). Fuzzy Cognitive Networks: Adaptive Network Estimation and Control Paradigms. In M. Glykas (Ed.), Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications (Pp. 89–134). Springer.
  • Kumar, R. & Kumar, V. (2016). Analysis of Significant Lean Manufacturing Elements through Application of Interpretive Structural Modeling Approach İn Indian Industry, 4(1), 83-92.
  • Misra, R. & Chakratory, A. (2014). Strengths, Weakneses, Opportunities and Threats Analysis of Lean Implementation. International Journal of Lean Enterprise Research.
  • Mostafa, S., Dumrak, J. & Soltan, H. (2013). A Framework for Lean Manufacturing Implementation. Production & Manufacturing Research, 1(1): 44-64.
  • Okur, A. S. (2005). 2000'li Yıllarda Türkiye Sanayii İçin Yapılanma Modeli: Yalın Üretim. İstanbul: Vira Reklam Yayım.
  • Özmez, D. (2006). Bir Üretim Organizasyonu Olarak Yalın Üretim Sistemi. Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Bursa.
  • Perez, M. & Sanchez, A. (2000). Lean Production and Supplier Relations: A Survey of Practices in the Aragonese Automotive Industry. Technovation, 20, 665-676.
  • Ramesh, V. & Kodali, R. (2012). A Decision Framework for Maximising Lean Manufacturing Performance. International Journal of Production Research, 50(8), 2234-2251.
  • Seleem, S. N., Attia, E. A. & El-Assal, A. M. (2017). Identification of Critical Success Factors for Lean Manufacturing Using Fuzzy Dematel Method. Journal of Engineering and Applied Science, 64(2), 141-163.
  • Shah, R. & Ward, P. T. (2003). Lean Manufacturing: Context, Practice Bundles, and Performance. Journal of Operations Management, 21, 129-149.
  • Shukla, A. (2005). Fat Results from Lean Implementation. Journal of Plant Engineering.
  • Sousa, S. & Aspınwall, E. (2010). Development of a Performance Measurement Framework for Smes. Total Quality Management & Business Excellence, 21(5), 475-501.
  • Taber, W. R. (1994). Fuzzy Cognitive Maps Model Social System. AI Expert, 19–23.
  • Taj, S. (2005). Applying Lean Assessment Tools in Chinese Hi-Tech Industries, Management Decision, 43(4), 628-643.
  • Taştan, Z. (2019). Sektör Bağımsız Yalınlık Ölçüm Modeli. Tekirdağ Namık Kemal Üniversitesi Yüksek Lisans Tezi.
  • Tsadiras, A. K. (2008). Comparing the Inference Capabilities of Binary, Trivalent and Sigmoid Fuzzy Cognitive Maps. Information Sciences, 178(20), 3880–3894.

Evaluation of Lean Transformation Success Factors with Fuzzy Cognitive Mapping

Year 2022, Volume: 3 Issue: 2, 108 - 119, 30.12.2022

Abstract

Competition conditions are getting harder in the textile industry that is developing, changing and growing day by day. In this process, the importance of lean production studies is constantly increasing. Issues such as the technical knowledge and equipment of the enterprises, the support of the senior management, and employee participation are of great importance in this process. In addition to these, there are various factors such as associating the methods and methods used in the success of lean practices with the customer, spreading the lean approach to suppliers, training and learning. In this study, the success factors of lean application-implementation in the textile sector were examined. In the study, firstly, lean success factors were determined with a comprehensive literature study. After the determination of the lean success factors to be used, the effects of the lean success factors on the lean transformation were determined with the help of fuzzy cognitive mapping (BBH) method. Afterwards, the order of priority and the weights of the factors were analyzed for the factors that are effective in the lean transformation.

References

  • Anand, T. (2000). A Framework for Evaluating Erp Projects. International Journal of Production Research, 38(17), 4507-4520.
  • Arnoldia, P. (2010). Factors of Successful Implementation of Erp Systems. Economics and Management, 15(8), 691-697.
  • Asan, U., Kutlu, A. C. & Kadaifçi, C. (2011). Analysis of Critical Factors in Energy Service Contracting Using Fuzzy Cognitive Mapping. Proceedings of the 41st International Conference on Computers and Industrial Engineering.
  • Bateman, R. (2009). Public Sector Human Resource Management Reform Across Countries: From Performance Appraisal to Performance Steering. European Journal of International Management, 3(4), 495-511.
  • Karlsson, C. & Åhlstrom, P. (1996). Assessing Changes Towards Lean Production. International Journal of Operations & Production Management, 16(2), 24-41.
  • Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Mach. Studies, 24(1), 65–75.
  • Kottas, T. L., Boutalis, Y. S. & Christodoulou, M. A. (2010). Fuzzy Cognitive Networks: Adaptive Network Estimation and Control Paradigms. In M. Glykas (Ed.), Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications (Pp. 89–134). Springer.
  • Kumar, R. & Kumar, V. (2016). Analysis of Significant Lean Manufacturing Elements through Application of Interpretive Structural Modeling Approach İn Indian Industry, 4(1), 83-92.
  • Misra, R. & Chakratory, A. (2014). Strengths, Weakneses, Opportunities and Threats Analysis of Lean Implementation. International Journal of Lean Enterprise Research.
  • Mostafa, S., Dumrak, J. & Soltan, H. (2013). A Framework for Lean Manufacturing Implementation. Production & Manufacturing Research, 1(1): 44-64.
  • Okur, A. S. (2005). 2000'li Yıllarda Türkiye Sanayii İçin Yapılanma Modeli: Yalın Üretim. İstanbul: Vira Reklam Yayım.
  • Özmez, D. (2006). Bir Üretim Organizasyonu Olarak Yalın Üretim Sistemi. Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Bursa.
  • Perez, M. & Sanchez, A. (2000). Lean Production and Supplier Relations: A Survey of Practices in the Aragonese Automotive Industry. Technovation, 20, 665-676.
  • Ramesh, V. & Kodali, R. (2012). A Decision Framework for Maximising Lean Manufacturing Performance. International Journal of Production Research, 50(8), 2234-2251.
  • Seleem, S. N., Attia, E. A. & El-Assal, A. M. (2017). Identification of Critical Success Factors for Lean Manufacturing Using Fuzzy Dematel Method. Journal of Engineering and Applied Science, 64(2), 141-163.
  • Shah, R. & Ward, P. T. (2003). Lean Manufacturing: Context, Practice Bundles, and Performance. Journal of Operations Management, 21, 129-149.
  • Shukla, A. (2005). Fat Results from Lean Implementation. Journal of Plant Engineering.
  • Sousa, S. & Aspınwall, E. (2010). Development of a Performance Measurement Framework for Smes. Total Quality Management & Business Excellence, 21(5), 475-501.
  • Taber, W. R. (1994). Fuzzy Cognitive Maps Model Social System. AI Expert, 19–23.
  • Taj, S. (2005). Applying Lean Assessment Tools in Chinese Hi-Tech Industries, Management Decision, 43(4), 628-643.
  • Taştan, Z. (2019). Sektör Bağımsız Yalınlık Ölçüm Modeli. Tekirdağ Namık Kemal Üniversitesi Yüksek Lisans Tezi.
  • Tsadiras, A. K. (2008). Comparing the Inference Capabilities of Binary, Trivalent and Sigmoid Fuzzy Cognitive Maps. Information Sciences, 178(20), 3880–3894.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Article
Authors

Duygu Tüylü 0000-0003-1486-6414

Yusuf Sait Türkan 0000-0001-7240-183X

Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Tüylü, D., & Türkan, Y. S. (2022). Bulanık Bilişsel Haritalama İle Yalın Dönüşüm Başarı Faktörlerinin Değerlendirilmesi. BİLİM-TEKNOLOJİ-YENİLİK EKOSİSTEMİ DERGİSİ, 3(2), 108-119.