Research Article
BibTex RIS Cite

Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications

Year 2024, , 98 - 104, 30.04.2024
https://doi.org/10.46387/bjesr.1443866

Abstract

A low-profile monopole patch antenna is proposed for wireless communication purposes, covering PCS1900, UMTS, LTE2300, LTE2500, ISM, and WLAN bands. The antenna features a novel double-crescent-shaped (D-Crescent-Shaped) patch with a partial ground plane to enhance bandwidth. Resonating at 2.4 GHz for ISM applications, the antenna, constructed on FR-4 dielectric, exhibits a proportional bandwidth of 38%, covering 1.91 GHz to 2.81 GHz. The design achieves a low-profile configuration with dimensions of 36.88×44.85 mm², featuring a thickness of 1.6 mm. The proposed antenna has a return loss of -56.1 dB and a directivity gain of 2.21 dBi. The proposed antenna, with its low-profile design, ease of manufacturing, and improved bandwidth and return loss, is well-suited for wireless communication applications across widely-used frequency ranges like PCS, UMTS, LTE2300, LTE2500, ISM, Wi-Fi, Bluetooth, and 4G LTE.

References

  • A. Ahmad,” Wireless and Mobile Data Networks”, Newy York; New Jersey, USA: Wiley-Interscience, 2008.
  • I. Elfergani, A.S. Hussaini, and J. Rodriguez, “Antenna fundamentals for legacy mobile applications and beyond”, New York, USA, 2018.
  • K.M. Morshed, D.K. Karmokar, and K.P. Esselle, “Antennas for licensed shared access in 5G communications with LTE mid- and high-band coverage,” Sensors (Basel), vol. 23, no. 4, 2023.
  • C.A. Balanis, “Antenna theory: Analysis and design”, Wiley-Interscience, 2014.
  • R. Aytekin, M. Tekbaş, and A. Kayabaşi, “Yagi-Uda Dizi Yama Anten Benzetimleri ve Gerçekleştirilmesi,” Gerçekleştirilmesi. KMUJENS, vol. 1, pp. 98–107, 2019.
  • Z. Zhang, S. Lin, Y. Sun, S. Liao, W. Che, and Q. Xue, “Low-profile shared-structure dual-polarized Yagi–Uda antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 4, pp. 843–847, 2022.
  • A.K. Doğan, M. Celep, and S. Ogan, “SAR Ölçümlerinde Kullanilmak Üzere Dipol Anten Yapimi ve Karakterizasyonu,” PAJES, vol. 8, pp. 310–313, 2014.
  • L. Chang, L.-L. Chen, J.-Q. Zhang, and Z.-Z. Chen, “A compact wideband dipole antenna with wide beamwidth,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 9, pp. 1701–1705, 2021.
  • M.H.B. Uçar and E. Uras, “ISM-Bandı Tıbbi Telemetri Uygulamaları için Fare Derisi Ekit Mikroşerit Spiral Anten Tasarımı ve In-Vitro Ölçümü,” Süleyman demirel üniv. fen bilim. enst. derg., vol. 0, no. 0, p. 10, 2017.
  • A. Onate, R. Leon, A.F. Tinoco-S, M. Paredes, and F. Lara, “Archimedean Spiral Antenna in UHF band for Military Applications,” IEEE ANDESCON, pp. 1-6, 2022.
  • M. Zeain, “Design of helical antenna for next generation wireless communication,” Prz. Elektrotech., vol. 1, no. 11, pp. 98–101, 2020.
  • C. Shu et al., “A wideband dual-circular-polarization horn antenna for mmWave wireless communications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 9, pp. 1726–1730, 2019.
  • A.Q. Khan, M. Riaz, and A. Bilal, “Various types of antenna with respect to their applications: a review,” International Journal of Multidisciplinary Sciences and Engineering, vol. 7, no. 3, pp. 1–8, 2016.
  • B. Yilmaz, “Design of ultra-wide band, dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications,” Int. J. Eng. Geosci., pp. 76-86, 2022.
  • K.-F. Lee and K.-F. Tong, “Microstrip patch antenna basic characteristics and some recent advances,” Proceedings of the IEEE, vol. 7, pp. 2169–2180, 2012.
  • I. Singh and V.S. Tripathi, “Micro strip patch antenna and its applications: a survey,” Int. J. Comp. Tech. Appl, vol. 2, pp. 1595–1599, 2011.
  • M.S. Rana, S.B. Rana, and M.M. Rahman, “Microstrip patch antennas for various applications: a review,” Indones J Electr Eng Comput Sci, vol. 3, pp. 1511–1519, 2023.
  • E. Yazgan, “Mikroşerit Antenler. Department of Electrical and Electronics, Hacettepe University,” Ankara, 1987.
  • S.A.R. Yazgparizi, Bandwidth enhancement techniques. Microstrip Antennas: Trends in Research on. 2017.
  • B. Mishra, R.K. Verma, N. Yashwanth, and R.K. Singh, “A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques,” Int. J. Microw. Wirel. Technol., vol. 14, no. 5, pp. 652–673, 2022.
  • A. Kumar, J. Kaur, and R. Singh, “Performance analysis of different feeding techniques,” International journal of emerging technology and advanced engineering, vol. 3, pp. 884–890, 2013.
  • R. Nofendra, R. Hanifah, and R. Fernandez, “The use of shorting pins in bandwidth enhancement of circular patch antenna,” AIP Conference Proceedings, vol. 2592, no. 1, 2023.
  • S. Sun and Y. Jiang, “A Near Zero Index Metamaterial Designed by Genetic Algorithms for Gain Enhancement of Microstrip Patch Antenna,” IEEE MTT-S, vol. 1, pp. 1–3, 2022.
  • A.M. Abdulhussein, A.H. Khidhir, and A.A. Naser, “December). 2.4 GHz microstrip patch antenna for S-band wireless communications,” in Journal of Physics: Conference Series, vol. 2114, IOP Publishing, 2021.
  • A.C. Çakir and C. Şeker, “Design and Simulation of 2.4 GHz Microstrip Antenna,” JOMCOM, vol. 2, pp. 30–33, 2021.
  • A.H. Khidhir, “Implementation of a circular shape patch antenna at 2.4 GHz for different wireless communications,” Iraqi J. Sci., pp. 205–214, 2023.
  • R.N. Adel and A.H. Khidhir, “Design of Inverted F-Shape Antenna at 2.35 GHz for S-Band Applications,” ANJS, vol. 254, pp. 38–42, 2022.
  • Ravikiran, H.K., Jayanth, J., Farheen H. S, N., Yogeesh, G. H. 2.4 GHz miniaturised rectangular MPA with defected ground and patch. IJEAST, 9: 167–170, 2023.
  • S.S. Bhatia and N. Sharma, “A Compact Wideband Antenna Using Partial Ground Plane with Truncated Corners, L-Shaped Stubs and Inverted T-Shaped Slots,” L-Shaped Stubs and Inverted T-Shaped Slots. PIER M, vol. 97, pp. 133–144, 2020.
  • S. Rashid and C.K. Chakrabarty, “Bandwidth enhanced rectangular patch antenna using partial ground plane method for WLAN applications,” Putrajaya Campus: UNITEN, vol. 1, pp. 8–9, 2015.

Kablosuz Uygulamalar için D-Hilal Şekilli Tek Kutuplu Yama Anteninin Bant Genişliğinin Artırılması

Year 2024, , 98 - 104, 30.04.2024
https://doi.org/10.46387/bjesr.1443866

Abstract

Bu çalışmada, çok yönlü kablosuz iletişim uygulamaları için PCS1900, UMTS, LTE2300, LTE2500, ISM ve WLAN bantlarını kapsayan düşük profilli bir mikroşerit yama anten önerilmektedir. Anten, bant genişliğini artırmakamacıyla kısmi bir toprak düzlemine sahip yeni bir çift hilal şekilli (D-Hilal Şekilli) yamaya sahip olacak biçimde tasarlanmıştır. ISM uygulamaları için 2,4 GHz'de rezonansa giren ve FR-4 dielektrik malzeme üzerine inşa edilen anten, 1,91 GHz ila 2,81 GHz'i kapsayan %38'lik oransal bant genişliği sergilemektedir. Tasarım, 36,88×44,85 mm² boyutları ve 1,6 mm kalınlığı ile düşük profile sahip bir konfigürasyondan oluşmaktadır. Antenin geri dönüş kaybı -56,1 dB ve yönlülük kazancı 2,21 dBi'dir. Önerilen anten, düşük profilli tasarımı, üretim kolaylığı ve gelişmiş bant genişliği ve geri dönüş kaybı ile PCS, UMTS, LTE2300, LTE2500, ISM, Wi-Fi, Bluetooth ve 4G LTE gibi yaygın olarak kullanılan frekans aralıklarında kablosuz iletişim uygulamaları için çok uygundur.

References

  • A. Ahmad,” Wireless and Mobile Data Networks”, Newy York; New Jersey, USA: Wiley-Interscience, 2008.
  • I. Elfergani, A.S. Hussaini, and J. Rodriguez, “Antenna fundamentals for legacy mobile applications and beyond”, New York, USA, 2018.
  • K.M. Morshed, D.K. Karmokar, and K.P. Esselle, “Antennas for licensed shared access in 5G communications with LTE mid- and high-band coverage,” Sensors (Basel), vol. 23, no. 4, 2023.
  • C.A. Balanis, “Antenna theory: Analysis and design”, Wiley-Interscience, 2014.
  • R. Aytekin, M. Tekbaş, and A. Kayabaşi, “Yagi-Uda Dizi Yama Anten Benzetimleri ve Gerçekleştirilmesi,” Gerçekleştirilmesi. KMUJENS, vol. 1, pp. 98–107, 2019.
  • Z. Zhang, S. Lin, Y. Sun, S. Liao, W. Che, and Q. Xue, “Low-profile shared-structure dual-polarized Yagi–Uda antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 4, pp. 843–847, 2022.
  • A.K. Doğan, M. Celep, and S. Ogan, “SAR Ölçümlerinde Kullanilmak Üzere Dipol Anten Yapimi ve Karakterizasyonu,” PAJES, vol. 8, pp. 310–313, 2014.
  • L. Chang, L.-L. Chen, J.-Q. Zhang, and Z.-Z. Chen, “A compact wideband dipole antenna with wide beamwidth,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 9, pp. 1701–1705, 2021.
  • M.H.B. Uçar and E. Uras, “ISM-Bandı Tıbbi Telemetri Uygulamaları için Fare Derisi Ekit Mikroşerit Spiral Anten Tasarımı ve In-Vitro Ölçümü,” Süleyman demirel üniv. fen bilim. enst. derg., vol. 0, no. 0, p. 10, 2017.
  • A. Onate, R. Leon, A.F. Tinoco-S, M. Paredes, and F. Lara, “Archimedean Spiral Antenna in UHF band for Military Applications,” IEEE ANDESCON, pp. 1-6, 2022.
  • M. Zeain, “Design of helical antenna for next generation wireless communication,” Prz. Elektrotech., vol. 1, no. 11, pp. 98–101, 2020.
  • C. Shu et al., “A wideband dual-circular-polarization horn antenna for mmWave wireless communications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 9, pp. 1726–1730, 2019.
  • A.Q. Khan, M. Riaz, and A. Bilal, “Various types of antenna with respect to their applications: a review,” International Journal of Multidisciplinary Sciences and Engineering, vol. 7, no. 3, pp. 1–8, 2016.
  • B. Yilmaz, “Design of ultra-wide band, dual-polarized quad ridged horn antenna for obstacle penetrating radar imaging applications,” Int. J. Eng. Geosci., pp. 76-86, 2022.
  • K.-F. Lee and K.-F. Tong, “Microstrip patch antenna basic characteristics and some recent advances,” Proceedings of the IEEE, vol. 7, pp. 2169–2180, 2012.
  • I. Singh and V.S. Tripathi, “Micro strip patch antenna and its applications: a survey,” Int. J. Comp. Tech. Appl, vol. 2, pp. 1595–1599, 2011.
  • M.S. Rana, S.B. Rana, and M.M. Rahman, “Microstrip patch antennas for various applications: a review,” Indones J Electr Eng Comput Sci, vol. 3, pp. 1511–1519, 2023.
  • E. Yazgan, “Mikroşerit Antenler. Department of Electrical and Electronics, Hacettepe University,” Ankara, 1987.
  • S.A.R. Yazgparizi, Bandwidth enhancement techniques. Microstrip Antennas: Trends in Research on. 2017.
  • B. Mishra, R.K. Verma, N. Yashwanth, and R.K. Singh, “A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques,” Int. J. Microw. Wirel. Technol., vol. 14, no. 5, pp. 652–673, 2022.
  • A. Kumar, J. Kaur, and R. Singh, “Performance analysis of different feeding techniques,” International journal of emerging technology and advanced engineering, vol. 3, pp. 884–890, 2013.
  • R. Nofendra, R. Hanifah, and R. Fernandez, “The use of shorting pins in bandwidth enhancement of circular patch antenna,” AIP Conference Proceedings, vol. 2592, no. 1, 2023.
  • S. Sun and Y. Jiang, “A Near Zero Index Metamaterial Designed by Genetic Algorithms for Gain Enhancement of Microstrip Patch Antenna,” IEEE MTT-S, vol. 1, pp. 1–3, 2022.
  • A.M. Abdulhussein, A.H. Khidhir, and A.A. Naser, “December). 2.4 GHz microstrip patch antenna for S-band wireless communications,” in Journal of Physics: Conference Series, vol. 2114, IOP Publishing, 2021.
  • A.C. Çakir and C. Şeker, “Design and Simulation of 2.4 GHz Microstrip Antenna,” JOMCOM, vol. 2, pp. 30–33, 2021.
  • A.H. Khidhir, “Implementation of a circular shape patch antenna at 2.4 GHz for different wireless communications,” Iraqi J. Sci., pp. 205–214, 2023.
  • R.N. Adel and A.H. Khidhir, “Design of Inverted F-Shape Antenna at 2.35 GHz for S-Band Applications,” ANJS, vol. 254, pp. 38–42, 2022.
  • Ravikiran, H.K., Jayanth, J., Farheen H. S, N., Yogeesh, G. H. 2.4 GHz miniaturised rectangular MPA with defected ground and patch. IJEAST, 9: 167–170, 2023.
  • S.S. Bhatia and N. Sharma, “A Compact Wideband Antenna Using Partial Ground Plane with Truncated Corners, L-Shaped Stubs and Inverted T-Shaped Slots,” L-Shaped Stubs and Inverted T-Shaped Slots. PIER M, vol. 97, pp. 133–144, 2020.
  • S. Rashid and C.K. Chakrabarty, “Bandwidth enhanced rectangular patch antenna using partial ground plane method for WLAN applications,” Putrajaya Campus: UNITEN, vol. 1, pp. 8–9, 2015.
There are 30 citations in total.

Details

Primary Language English
Subjects Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Research Articles
Authors

Cem Güler 0000-0002-6631-7559

Sena Esen Bayer Keskin 0000-0001-8309-3393

Early Pub Date April 27, 2024
Publication Date April 30, 2024
Submission Date February 27, 2024
Acceptance Date March 28, 2024
Published in Issue Year 2024

Cite

APA Güler, C., & Bayer Keskin, S. E. (2024). Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(1), 98-104. https://doi.org/10.46387/bjesr.1443866
AMA Güler C, Bayer Keskin SE. Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications. Müh.Bil.ve Araş.Dergisi. April 2024;6(1):98-104. doi:10.46387/bjesr.1443866
Chicago Güler, Cem, and Sena Esen Bayer Keskin. “Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 6, no. 1 (April 2024): 98-104. https://doi.org/10.46387/bjesr.1443866.
EndNote Güler C, Bayer Keskin SE (April 1, 2024) Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications. Mühendislik Bilimleri ve Araştırmaları Dergisi 6 1 98–104.
IEEE C. Güler and S. E. Bayer Keskin, “Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications”, Müh.Bil.ve Araş.Dergisi, vol. 6, no. 1, pp. 98–104, 2024, doi: 10.46387/bjesr.1443866.
ISNAD Güler, Cem - Bayer Keskin, Sena Esen. “Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications”. Mühendislik Bilimleri ve Araştırmaları Dergisi 6/1 (April 2024), 98-104. https://doi.org/10.46387/bjesr.1443866.
JAMA Güler C, Bayer Keskin SE. Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications. Müh.Bil.ve Araş.Dergisi. 2024;6:98–104.
MLA Güler, Cem and Sena Esen Bayer Keskin. “Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 6, no. 1, 2024, pp. 98-104, doi:10.46387/bjesr.1443866.
Vancouver Güler C, Bayer Keskin SE. Bandwidth Enhancement of a D-Crescent-Shaped Monopole Patch Antenna for Wireless Applications. Müh.Bil.ve Araş.Dergisi. 2024;6(1):98-104.