Research Article
BibTex RIS Cite

Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi

Year 2021, , 188 - 206, 30.10.2021
https://doi.org/10.46387/bjesr.955356

Abstract

Yetersiz veya düzgün olmayan ışık altında alınan renkli görüntü uygulamalarında, düşük parlaklık, zayıf kontrast ve ışıkta ani değişiklik gibi istenmeyen durumlar meydana gelmektedir. Düşük ışıklı renkli görüntülerini iyileştirilmesi için yaygın kullanılan Retineks teorisi, genel olarak yerel görüntü türevlerini analiz ederek, aydınlatma ve yansıtma bileşenlerine ayırmak için geliştirilmiştir. Bu çalışma, Retineks tabanlı algoritmalara dayanan son teknoloji görüntü geliştirme algoritmalarının karşılaştırmalı bir analizini sunmaktadır. Bunun için günümüze kadar düşük ışıklı renkli görüntülerin iyileştirilmesinde kullanılan ve çok tercih edilen on adet Retineks esaslı yöntem alınmıştır. Ayrıca beş adet yaygın kullanılan karşılaştırma ölçüm metrikleri de incelenmiş ve performans karşılaştırması olarak kullanılmıştır. Karşılaştırma sonuçları görsel ve sayısal olarak verilmiştir. Bu karşılaştırmalı analiz çalışması Retineks esaslı görüntü iyileştirme alanında yeni verimli algoritmalar geliştirmek için araştırmacılara yardımcı olmayı amaçlamaktadır.

References

  • S. M. Pizer, "Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group", In Proceedings of the F, 1990.
  • J. C. Russ, The image processing handbook. CRC press, 2016.
  • Y. T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization", IEEE transactions on Consumer Electronics, 43(1), 1-8, 1997.
  • Q. Wang, R. K. Ward, "Fast image/video contrast enhancement based on weighted thresholded histogram equalization", IEEE transactions on Consumer Electronics, 53(2), 2007.
  • L. Li, R. Wang, W. Wang & W. Gao, "A low-light image enhancement method for both denoising and contrast enlarging", In 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730-3734, IEEE, 2015.
  • X. Zhang, P. Shen, L. Luo, L. Zhang & J. Song, "Enhancement and noise reduction of very low light level images", In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 2034-2037, IEEE, 2012. Z. Huang, T. Zhang, Q. Li & H. Fang, "Adaptive gamma correction based on cumulative histogram for enhancing near-infrared images", Infrared Physics & Technology, 79, 205-215, 2016.
  • S. C. Huang, F. C. Cheng & Y. S. Chiu, "Efficient contrast enhancement using adaptive gamma correction with weighting distribution", IEEE transactions on image processing, 22(3), 1032-1041, 2012.
  • G. Deng, "A generalized gamma correction algorithm based on the SLIP model", EURASIP Journal on Advances in Signal Processing, 2016(1), 69, 2016.
  • D. J. Jobson, Z. U. Rahman & G. A. Woodell, "Properties and performance of a center/surround retinex", IEEE transactions on image processing, 6(3), 451-462, 1997.
  • Z. U. Rahman, D. J. Jobson & G. A. Woodell, "Multi-scale retinex for color image enhancement", In Proceedings of 3rd IEEE International Conference on Image Processing, Vol. 3, pp. 1003-1006, IEEE, 1996.
  • D. J. Jobson, Z. U. Rahman & G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes", IEEE Transactions on Image processing, 6(7), 965-976, 1997.
  • M. K. Ng, W. Wang, "A total variation model for Retinex", SIAM Journal on Imaging Sciences, 4(1), 345-365, 2011.
  • S. Wang, J. Zheng, H. M. Hu, & B. Li, "Naturalness preserved enhancement algorithm for non-uniform illumination images", IEEE Transactions on Image Processing, 22(9), 3538-3548, 2013.
  • X. Fu, Y. Liao, D. Zeng, Y. Huang, X. P. Zhang & X. Ding, "A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation", IEEE Transactions on Image Processing, 24(12), 4965-4977, 2015.
  • X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding & J. Paisley, "A fusion-based enhancing method for weakly illuminated images", Signal Processing, 129, 82-96, 2016.
  • X. Guo, Y. Li, & H. Ling, "LIME: Low-light image enhancement via illumination map estimation", IEEE Transactions on image processing, 26(2), 982-993, 2016.
  • B. Cai, X. Xu, K. Guo, K. Jia, B. Hu & D. Tao, "A joint intrinsic-extrinsic prior model for retinex", In Proceedings of the IEEE international conference on computer vision, pp. 4000-4009, 2017.
  • M. Li, J. Liu, W. Yang, X. Sun & Z. Guo, "Structure-revealing low-light image enhancement via robust retinex model", IEEE Transactions on Image Processing, 27(6), 2828-2841, 2018.
  • X. Ren, W. Yang, W. H. Cheng & J. Liu, "LR3M: robust low-light enhancement via low-rank regularized retinex model", IEEE Transactions on Image Processing, 29, 5862-5876, 2020. J. Xu, Y. Hou, D. Ren, L. Liu, F. Zhu, M. Yu & L. Shao, "STAR: A structure and texture aware retinex model", IEEE Transactions on Image Processing, 29, 5022-5037, 2020.
  • E. H. Land, J. J. McCann, "Li1ghtness and retinex theory", Josa, 61(1), 1-11, 1971.
  • E. H. Land, "An alternative technique for the computation of the designator in the retinex theory of color vision", Proceedings of the national academy of sciences, 83(10), 3078-3080, 1986.
  • W. Xue, L. Zhang, X. Mou & A. C. Bovik, "Gradient magnitude similarity deviation: A highly efficient perceptual image quality index", IEEE Transactions on Image Processing, 23(2), 684-695, 2013.
  • A. Mittal, R. Soundararajan & A. C. Bovik, "Making a “completely blind” image quality analyzer", IEEE Signal processing letters, 20(3), 209-212, 2012.
  • K. Gu, G. Zhai, W. Lin, X. Yang & W. Zhang, "No-reference image sharpness assessment in autoregressive parameter space", IEEE Transactions on Image Processing, 24(10), 3218-3231, 2015.
  • K. Gu, S. Wang, G. Zhai, S. Ma, X. Yang, W. Lin & W. Gao, "Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure", IEEE Transactions on Multimedia, 18(3), 432-443, 2016.
Year 2021, , 188 - 206, 30.10.2021
https://doi.org/10.46387/bjesr.955356

Abstract

References

  • S. M. Pizer, "Contrast-limited adaptive histogram equalization: Speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group", In Proceedings of the F, 1990.
  • J. C. Russ, The image processing handbook. CRC press, 2016.
  • Y. T. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization", IEEE transactions on Consumer Electronics, 43(1), 1-8, 1997.
  • Q. Wang, R. K. Ward, "Fast image/video contrast enhancement based on weighted thresholded histogram equalization", IEEE transactions on Consumer Electronics, 53(2), 2007.
  • L. Li, R. Wang, W. Wang & W. Gao, "A low-light image enhancement method for both denoising and contrast enlarging", In 2015 IEEE International Conference on Image Processing (ICIP), pp. 3730-3734, IEEE, 2015.
  • X. Zhang, P. Shen, L. Luo, L. Zhang & J. Song, "Enhancement and noise reduction of very low light level images", In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 2034-2037, IEEE, 2012. Z. Huang, T. Zhang, Q. Li & H. Fang, "Adaptive gamma correction based on cumulative histogram for enhancing near-infrared images", Infrared Physics & Technology, 79, 205-215, 2016.
  • S. C. Huang, F. C. Cheng & Y. S. Chiu, "Efficient contrast enhancement using adaptive gamma correction with weighting distribution", IEEE transactions on image processing, 22(3), 1032-1041, 2012.
  • G. Deng, "A generalized gamma correction algorithm based on the SLIP model", EURASIP Journal on Advances in Signal Processing, 2016(1), 69, 2016.
  • D. J. Jobson, Z. U. Rahman & G. A. Woodell, "Properties and performance of a center/surround retinex", IEEE transactions on image processing, 6(3), 451-462, 1997.
  • Z. U. Rahman, D. J. Jobson & G. A. Woodell, "Multi-scale retinex for color image enhancement", In Proceedings of 3rd IEEE International Conference on Image Processing, Vol. 3, pp. 1003-1006, IEEE, 1996.
  • D. J. Jobson, Z. U. Rahman & G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes", IEEE Transactions on Image processing, 6(7), 965-976, 1997.
  • M. K. Ng, W. Wang, "A total variation model for Retinex", SIAM Journal on Imaging Sciences, 4(1), 345-365, 2011.
  • S. Wang, J. Zheng, H. M. Hu, & B. Li, "Naturalness preserved enhancement algorithm for non-uniform illumination images", IEEE Transactions on Image Processing, 22(9), 3538-3548, 2013.
  • X. Fu, Y. Liao, D. Zeng, Y. Huang, X. P. Zhang & X. Ding, "A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation", IEEE Transactions on Image Processing, 24(12), 4965-4977, 2015.
  • X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding & J. Paisley, "A fusion-based enhancing method for weakly illuminated images", Signal Processing, 129, 82-96, 2016.
  • X. Guo, Y. Li, & H. Ling, "LIME: Low-light image enhancement via illumination map estimation", IEEE Transactions on image processing, 26(2), 982-993, 2016.
  • B. Cai, X. Xu, K. Guo, K. Jia, B. Hu & D. Tao, "A joint intrinsic-extrinsic prior model for retinex", In Proceedings of the IEEE international conference on computer vision, pp. 4000-4009, 2017.
  • M. Li, J. Liu, W. Yang, X. Sun & Z. Guo, "Structure-revealing low-light image enhancement via robust retinex model", IEEE Transactions on Image Processing, 27(6), 2828-2841, 2018.
  • X. Ren, W. Yang, W. H. Cheng & J. Liu, "LR3M: robust low-light enhancement via low-rank regularized retinex model", IEEE Transactions on Image Processing, 29, 5862-5876, 2020. J. Xu, Y. Hou, D. Ren, L. Liu, F. Zhu, M. Yu & L. Shao, "STAR: A structure and texture aware retinex model", IEEE Transactions on Image Processing, 29, 5022-5037, 2020.
  • E. H. Land, J. J. McCann, "Li1ghtness and retinex theory", Josa, 61(1), 1-11, 1971.
  • E. H. Land, "An alternative technique for the computation of the designator in the retinex theory of color vision", Proceedings of the national academy of sciences, 83(10), 3078-3080, 1986.
  • W. Xue, L. Zhang, X. Mou & A. C. Bovik, "Gradient magnitude similarity deviation: A highly efficient perceptual image quality index", IEEE Transactions on Image Processing, 23(2), 684-695, 2013.
  • A. Mittal, R. Soundararajan & A. C. Bovik, "Making a “completely blind” image quality analyzer", IEEE Signal processing letters, 20(3), 209-212, 2012.
  • K. Gu, G. Zhai, W. Lin, X. Yang & W. Zhang, "No-reference image sharpness assessment in autoregressive parameter space", IEEE Transactions on Image Processing, 24(10), 3218-3231, 2015.
  • K. Gu, S. Wang, G. Zhai, S. Ma, X. Yang, W. Lin & W. Gao, "Blind quality assessment of tone-mapped images via analysis of information, naturalness, and structure", IEEE Transactions on Multimedia, 18(3), 432-443, 2016.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Software Testing, Verification and Validation
Journal Section Research Articles
Authors

Ferzan Katırcıoğlu 0000-0001-5463-3792

Publication Date October 30, 2021
Published in Issue Year 2021

Cite

APA Katırcıoğlu, F. (2021). Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 3(2), 188-206. https://doi.org/10.46387/bjesr.955356
AMA Katırcıoğlu F. Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi. Müh.Bil.ve Araş.Dergisi. October 2021;3(2):188-206. doi:10.46387/bjesr.955356
Chicago Katırcıoğlu, Ferzan. “Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 3, no. 2 (October 2021): 188-206. https://doi.org/10.46387/bjesr.955356.
EndNote Katırcıoğlu F (October 1, 2021) Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi. Mühendislik Bilimleri ve Araştırmaları Dergisi 3 2 188–206.
IEEE F. Katırcıoğlu, “Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi”, Müh.Bil.ve Araş.Dergisi, vol. 3, no. 2, pp. 188–206, 2021, doi: 10.46387/bjesr.955356.
ISNAD Katırcıoğlu, Ferzan. “Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi”. Mühendislik Bilimleri ve Araştırmaları Dergisi 3/2 (October 2021), 188-206. https://doi.org/10.46387/bjesr.955356.
JAMA Katırcıoğlu F. Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi. Müh.Bil.ve Araş.Dergisi. 2021;3:188–206.
MLA Katırcıoğlu, Ferzan. “Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 3, no. 2, 2021, pp. 188-06, doi:10.46387/bjesr.955356.
Vancouver Katırcıoğlu F. Düşük-Işıklı Renkli Görüntülerin İyileştirilmesinde Kullanılan Retineks Algoritmalarının Karşılaştırmalı Analizi. Müh.Bil.ve Araş.Dergisi. 2021;3(2):188-206.