Research Article
BibTex RIS Cite

ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK

Year 2019, Volume: 1 Issue: 1, 24 - 34, 31.10.2019
https://doi.org/10.46387/bjesr.630955

Abstract

In this study, Sulfonated poly
(diphenylamine): Ag nanowire network
transparent conductive electrode was prepared that is
expected to have high transparency and low resistance for organic solar cells.
The resistance value was 10
Ωsq-1 and the optical
permeability value was 88% with Sulfonated poly (diphenylamine): Ag nanowire
network electrode.
By using the
electrode in organic solar cell, the solar cell efficiency was obtained 2.7%.
The prepared
Sulfonated poly (diphenylamine): Ag nanowire network electrode is an alternative to Indium tin oxide
for use in organic electronic devices as a promising electrode and can also be
used in flexible electronic applications.

References

  • [1] T.M. Barnes, M. O. Reese, J.D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, and J. Bult, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Advanced Energy Materials, vol. 2, no.3, pp. 353-360, 2012.
  • [2] S. Coskun, B. Aksoy, and H.E. Unalan, “Polyol synthesis of silver NWs: an extensive parametric study,” Crystal Growth & Design, vol.11, no.11, pp. 4963-4969, 2011.
  • [3] D. Chen, X. Qiao, and J. Chen, “Morphology-controlled synthesis of silver nanostructures via a solvothermal method,” Journal of Materials Science: Materials in Electronics, vol. 22, no.9, pp. 1335-1339, 2011.
  • [4] Y. Lu and K. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology, vol. 21, no. 21, pp. 215707, 2010.
  • [5] R.C. Tenent, T.M. Barnes, J.D. Bergeson, A. J. Ferguson, B. To, L. Gedvilas, M. J. Heben, and J. Blackburn, “Ultrasmooth, Large‐Area, High‐Uniformity, Conductive Transparent Single‐Walled‐Carbon‐Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Advanced materials, vol. 21, no. 31, pp. 3210-3216, 2009.
  • [6] V. Scardaci, R. Coull, P.E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low‐resistance networks of silver NWs over large areas,” Small, vol. 7, no. 18, pp. 2621-2628, 2011.
  • [7] A.R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver NWs on arbitrary substrates and their application in touch screens,” Nanotechnology, vol. 22, no. 24, pp. 245201, 2011.
  • [8] A.R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver NW network on rigid and flexible substrates using a dry transfer technique,” Nano Research, vol. 3, no. 8, pp. 564-573, 2010.
  • [9] J. Huang, R. Fan, S. Connar, and P. Yang, “One‐Step Patterning of Aligned NW Arrays by Programmed Dip Coating,” Angewandte Chemie, vol. 119, no. 14, pp. 2466-2469, 2007.
  • [10] D. Whang, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of NW arrays for integrated nanosystems.” Nano letters, vol. 3, no. 9, pp. 1255-1259, 2003.
  • [11] P.A. Smith, C. D. Nordquist, T. N. Jackson, and T. S. Mayer, “Electric-field assisted assembly and alignment of metallic NWs,” Applied Physics Letters, vol. 77, no. 9, pp. 1399, 2000.
  • [12] J. Seo, H. Lee, S. Lee, T. Lee, and J. M. Myoung, “Direct gravure printing of silicon NWs using entropic attraction forces,” Small, vol. 8, no. 10, pp. 1614-1621, 2012.
  • [13] P.-C. Hsu, H. Wu, T. J. Carney, M. T. Mcdowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Y. Cui, “Passivation coating on electrospun copper nanofibers for stable transparent electrodes,” ACS nano, vol. 6, no. 6, pp. 5150-5156, 2012.
  • [14] J.-Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal NW mesh transparent electrodes,” Nano letters, vol. 8, no. 2, pp. 689-692, 2008.
  • [15] J.-Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano letters, vol. 10, no. 4, pp. 1276-1279, 2010.
  • [16] W. Gaynor, G. F. Burkhard, M. D. Mcgehee, and P. Peumans, “Smooth NW/polymer composite transparent electrodes,” Advanced materials, vol. 23, no. 26, pp. 2905-2910, 2011.
  • [17] C.-H. Chung, T. B. Song, B. Bob, R. Zhu, and Y. Yang, “Solution-processed flexible transparent conductors composed of silver NW networks embedded in indium tin oxide nanoparticle matrices,” Nano Research, vol. 5, no. 11, pp. 805-814, 2012.
  • [18] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, “Efficient organic solar cells with solution‐processed silver NW electrodes,” Advanced materials, vol. 23, no. 38, pp. 4371-4375, 2011.
  • [19] C.-H. Liu and X. Yu, “Silver NW-based transparent, flexible, and conductive thin film,” Nanoscale research letters, vol. 6, no. 1, pp. 1, 2011.
  • [20] B.E, Hardin, W. Gaynor, I-K. Ding, S.-B. Rim, P. Peumans, and M. D. Mcgehee, “Laminating solution-processed silver NW mesh electrodes onto solid-state dye-sensitized solar cells,” Organic Electronics, vol. 12, no. 6, pp. 875-879, 2011.
  • [21] X.Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver NW film buried at the surface of a transparent polymer,” Advanced materials, vol. 22, no. 40, pp. 4484-4488, 2010.
  • [22] A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag NW/ZnO composite electrode for thin film solar cells,” ACS nano, vol. 7, no. 2, pp. 1081-1091, 2013.
  • [23] E.C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. Mcgehee, and M. L. Brongersma,” Self-limited plasmonic welding of silver NW junctions,” Nature materials, vol. 11, no. 3, pp. 241-249, 2012.
  • [24] F.S. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. Coleman, and R. H. Friend, “Ag-NW films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Applied Physics Letters, vol. 99, no. 18, pp. 183307, 2011.
  • [25] P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver NWs,” Journal of Materials Chemistry, vol. 22, no. 23, pp. 11651-11657, 2012.
  • [26] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, and O. Inganas, “Polymer photovoltaic cells with conducting polymer anodes,” Advanced Materials, vol. 14, no. 9, pp. 662-665, 2002.
  • [27] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, and K. Lee, “Highly Conductive PEDOT: PSS Nanofibrils Induced by Solution‐Processed Crystallization. Advanced materials,” vol. 26, no. 14, pp. 2268-2272, 2014.
  • [28] Y. Xia, K. Sun, and J. Ouyang, “Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced materials,” vol. 24, no. 18, pp. 2436-2440, 2012.
  • [29] C. Guillén and J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films, vol. 520, no. 1, pp. 1-17, 2011.
  • [30] N.P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Advanced materials, vol. 24, no. 6, pp. 728-732, 2012.
  • [31] H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P. L. Burn, and P. Meredith, “Efficient, large area ITO‐and‐PEDOT‐free organic solar cell sub‐modules,” Advanced materials, vol. 24, no. 19, pp. 2572-2577, 2012.
  • [32] X. Guo, X. Liu, F. Lin, H. Li, Y. Fan, and N. Zhang, “Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics,” Scientific reports, vol. 5, 2015.
  • [33] H.-L. Yip and A.K.-Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells,” Energy & Environmental Science, vol. 5, no. 3, pp. 5994-6011, 2012.
  • [34] S. Bae, J. U. Lee, H. S. Park, E. H. Jung, J. W. Jung, and W. H. Joo, “Enhanced performance of polymer solar cells with PSSA-g- PANI/Graphene oxide composite as hole transport layer,” Solar Energy Materials and Solar Cells, vol. 130, pp. 599-604, 2014.
  • [35] C.-Y. Li, T. C. Wen, T. F. Guo, and S. S. Hou, “A facile synthesis of sulfonated poly (diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes,” Polymer, vol. 49, no. 4, pp. 957-964, 2008.
  • [36] W.J. Bae, K. H. Kim, Y. H. Park, and W. H. Jo, “A novel water-soluble and self-doped conducting polyaniline graft copolymer,” Chemical Communications, vol. 22, pp. 2768-2769, 2003.
  • [37] X. Fan, M. Zhang, X. Wang, F. Yang, and X. Meng, “Recent progress in organic–inorganic hybrid solar cells,” Journal of Materials Chemistry A, vol. 1, no. 31, pp. 8694-8709, 2013.
  • [38] J.W. Jung, J.U. Lee, and W.H. Jo, “High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer,” The Journal of Physical Chemistry C, vol. 114, no. 1, pp. 633-637, 2009.
  • [39] W.J. Bae, K. H. Kim, W. H. Jo, and, Y. H. Park, “A water-soluble and self-doped conducting polypyrrole graft copolymer,” Macromolecules, vol. 38, no. 4, pp. 1044-1047, 2005.
  • [40] S. Coskun, E.S. Ates, and H.E. Unalan, “Optimization of silver NW networks for polymer light emitting diode electrodes,” Nanotechnology, vol. 24, no. 12, pp. 125202, 2013.

SPDA:AG NANOTEL AĞ ELEKTROTLU ORGANİK GÜNEŞ HÜCRESİ

Year 2019, Volume: 1 Issue: 1, 24 - 34, 31.10.2019
https://doi.org/10.46387/bjesr.630955

Abstract

Bu çalışmada, organik güneş pilleri için yüksek saydamlık ve düşük dirence sahip olması beklenen Sülfonatlı poli (difenilamin): Ag nanotel ağ saydam iletken elektrot hazırlanmıştır. Sülfonatlı poli (difenilamin): Ag nanotel ağ saydam iletken elektrotun yüzey direnci 10Ωcm-2ve optik geçirgenliği % 88’dir. Elektrot organik güneş hücresinde kullanıldığında güneş hücresinin verimi % 2,7 elde edilmiştir. Hazırlanan Sülfonatlı poli (difenilamin): Ag nanowire ağ elektrotu, gelecek vaat eden bir elektrot olarak organik elektronik cihazlarda kullanım için Indiyum kalay oksit malzemeye alternatiftir ve esnek elektronik uygulamalarda da kullanılabilir.

References

  • [1] T.M. Barnes, M. O. Reese, J.D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, and J. Bult, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Advanced Energy Materials, vol. 2, no.3, pp. 353-360, 2012.
  • [2] S. Coskun, B. Aksoy, and H.E. Unalan, “Polyol synthesis of silver NWs: an extensive parametric study,” Crystal Growth & Design, vol.11, no.11, pp. 4963-4969, 2011.
  • [3] D. Chen, X. Qiao, and J. Chen, “Morphology-controlled synthesis of silver nanostructures via a solvothermal method,” Journal of Materials Science: Materials in Electronics, vol. 22, no.9, pp. 1335-1339, 2011.
  • [4] Y. Lu and K. Chou, “Tailoring of silver wires and their performance as transparent conductive coatings,” Nanotechnology, vol. 21, no. 21, pp. 215707, 2010.
  • [5] R.C. Tenent, T.M. Barnes, J.D. Bergeson, A. J. Ferguson, B. To, L. Gedvilas, M. J. Heben, and J. Blackburn, “Ultrasmooth, Large‐Area, High‐Uniformity, Conductive Transparent Single‐Walled‐Carbon‐Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Advanced materials, vol. 21, no. 31, pp. 3210-3216, 2009.
  • [6] V. Scardaci, R. Coull, P.E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low‐resistance networks of silver NWs over large areas,” Small, vol. 7, no. 18, pp. 2621-2628, 2011.
  • [7] A.R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver NWs on arbitrary substrates and their application in touch screens,” Nanotechnology, vol. 22, no. 24, pp. 245201, 2011.
  • [8] A.R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, “Uniform, highly conductive, and patterned transparent films of a percolating silver NW network on rigid and flexible substrates using a dry transfer technique,” Nano Research, vol. 3, no. 8, pp. 564-573, 2010.
  • [9] J. Huang, R. Fan, S. Connar, and P. Yang, “One‐Step Patterning of Aligned NW Arrays by Programmed Dip Coating,” Angewandte Chemie, vol. 119, no. 14, pp. 2466-2469, 2007.
  • [10] D. Whang, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of NW arrays for integrated nanosystems.” Nano letters, vol. 3, no. 9, pp. 1255-1259, 2003.
  • [11] P.A. Smith, C. D. Nordquist, T. N. Jackson, and T. S. Mayer, “Electric-field assisted assembly and alignment of metallic NWs,” Applied Physics Letters, vol. 77, no. 9, pp. 1399, 2000.
  • [12] J. Seo, H. Lee, S. Lee, T. Lee, and J. M. Myoung, “Direct gravure printing of silicon NWs using entropic attraction forces,” Small, vol. 8, no. 10, pp. 1614-1621, 2012.
  • [13] P.-C. Hsu, H. Wu, T. J. Carney, M. T. Mcdowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Y. Cui, “Passivation coating on electrospun copper nanofibers for stable transparent electrodes,” ACS nano, vol. 6, no. 6, pp. 5150-5156, 2012.
  • [14] J.-Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Solution-processed metal NW mesh transparent electrodes,” Nano letters, vol. 8, no. 2, pp. 689-692, 2008.
  • [15] J.-Y. Lee, S. Connor, Y. Cui, and P. Peumans, “Semitransparent organic photovoltaic cells with laminated top electrode,” Nano letters, vol. 10, no. 4, pp. 1276-1279, 2010.
  • [16] W. Gaynor, G. F. Burkhard, M. D. Mcgehee, and P. Peumans, “Smooth NW/polymer composite transparent electrodes,” Advanced materials, vol. 23, no. 26, pp. 2905-2910, 2011.
  • [17] C.-H. Chung, T. B. Song, B. Bob, R. Zhu, and Y. Yang, “Solution-processed flexible transparent conductors composed of silver NW networks embedded in indium tin oxide nanoparticle matrices,” Nano Research, vol. 5, no. 11, pp. 805-814, 2012.
  • [18] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, “Efficient organic solar cells with solution‐processed silver NW electrodes,” Advanced materials, vol. 23, no. 38, pp. 4371-4375, 2011.
  • [19] C.-H. Liu and X. Yu, “Silver NW-based transparent, flexible, and conductive thin film,” Nanoscale research letters, vol. 6, no. 1, pp. 1, 2011.
  • [20] B.E, Hardin, W. Gaynor, I-K. Ding, S.-B. Rim, P. Peumans, and M. D. Mcgehee, “Laminating solution-processed silver NW mesh electrodes onto solid-state dye-sensitized solar cells,” Organic Electronics, vol. 12, no. 6, pp. 875-879, 2011.
  • [21] X.Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver NW film buried at the surface of a transparent polymer,” Advanced materials, vol. 22, no. 40, pp. 4484-4488, 2010.
  • [22] A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag NW/ZnO composite electrode for thin film solar cells,” ACS nano, vol. 7, no. 2, pp. 1081-1091, 2013.
  • [23] E.C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. Mcgehee, and M. L. Brongersma,” Self-limited plasmonic welding of silver NW junctions,” Nature materials, vol. 11, no. 3, pp. 241-249, 2012.
  • [24] F.S. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. Coleman, and R. H. Friend, “Ag-NW films coated with ZnO nanoparticles as a transparent electrode for solar cells,” Applied Physics Letters, vol. 99, no. 18, pp. 183307, 2011.
  • [25] P. Ramasamy, D. M. Seo, S. H. Kim, and J. Kim, “Effects of TiO2 shells on optical and thermal properties of silver NWs,” Journal of Materials Chemistry, vol. 22, no. 23, pp. 11651-11657, 2012.
  • [26] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, and O. Inganas, “Polymer photovoltaic cells with conducting polymer anodes,” Advanced Materials, vol. 14, no. 9, pp. 662-665, 2002.
  • [27] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim, and K. Lee, “Highly Conductive PEDOT: PSS Nanofibrils Induced by Solution‐Processed Crystallization. Advanced materials,” vol. 26, no. 14, pp. 2268-2272, 2014.
  • [28] Y. Xia, K. Sun, and J. Ouyang, “Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced materials,” vol. 24, no. 18, pp. 2436-2440, 2012.
  • [29] C. Guillén and J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films, vol. 520, no. 1, pp. 1-17, 2011.
  • [30] N.P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Advanced materials, vol. 24, no. 6, pp. 728-732, 2012.
  • [31] H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P. L. Burn, and P. Meredith, “Efficient, large area ITO‐and‐PEDOT‐free organic solar cell sub‐modules,” Advanced materials, vol. 24, no. 19, pp. 2572-2577, 2012.
  • [32] X. Guo, X. Liu, F. Lin, H. Li, Y. Fan, and N. Zhang, “Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics,” Scientific reports, vol. 5, 2015.
  • [33] H.-L. Yip and A.K.-Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells,” Energy & Environmental Science, vol. 5, no. 3, pp. 5994-6011, 2012.
  • [34] S. Bae, J. U. Lee, H. S. Park, E. H. Jung, J. W. Jung, and W. H. Joo, “Enhanced performance of polymer solar cells with PSSA-g- PANI/Graphene oxide composite as hole transport layer,” Solar Energy Materials and Solar Cells, vol. 130, pp. 599-604, 2014.
  • [35] C.-Y. Li, T. C. Wen, T. F. Guo, and S. S. Hou, “A facile synthesis of sulfonated poly (diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes,” Polymer, vol. 49, no. 4, pp. 957-964, 2008.
  • [36] W.J. Bae, K. H. Kim, Y. H. Park, and W. H. Jo, “A novel water-soluble and self-doped conducting polyaniline graft copolymer,” Chemical Communications, vol. 22, pp. 2768-2769, 2003.
  • [37] X. Fan, M. Zhang, X. Wang, F. Yang, and X. Meng, “Recent progress in organic–inorganic hybrid solar cells,” Journal of Materials Chemistry A, vol. 1, no. 31, pp. 8694-8709, 2013.
  • [38] J.W. Jung, J.U. Lee, and W.H. Jo, “High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer,” The Journal of Physical Chemistry C, vol. 114, no. 1, pp. 633-637, 2009.
  • [39] W.J. Bae, K. H. Kim, W. H. Jo, and, Y. H. Park, “A water-soluble and self-doped conducting polypyrrole graft copolymer,” Macromolecules, vol. 38, no. 4, pp. 1044-1047, 2005.
  • [40] S. Coskun, E.S. Ates, and H.E. Unalan, “Optimization of silver NW networks for polymer light emitting diode electrodes,” Nanotechnology, vol. 24, no. 12, pp. 125202, 2013.
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Nevin Taşaltın 0000-0001-6788-1605

Bahriye Karaca 0000-0003-4463-8180

Publication Date October 31, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Taşaltın, N., & Karaca, B. (2019). ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 1(1), 24-34. https://doi.org/10.46387/bjesr.630955
AMA Taşaltın N, Karaca B. ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK. BJESR. October 2019;1(1):24-34. doi:10.46387/bjesr.630955
Chicago Taşaltın, Nevin, and Bahriye Karaca. “ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 1, no. 1 (October 2019): 24-34. https://doi.org/10.46387/bjesr.630955.
EndNote Taşaltın N, Karaca B (October 1, 2019) ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK. Mühendislik Bilimleri ve Araştırmaları Dergisi 1 1 24–34.
IEEE N. Taşaltın and B. Karaca, “ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK”, BJESR, vol. 1, no. 1, pp. 24–34, 2019, doi: 10.46387/bjesr.630955.
ISNAD Taşaltın, Nevin - Karaca, Bahriye. “ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK”. Mühendislik Bilimleri ve Araştırmaları Dergisi 1/1 (October 2019), 24-34. https://doi.org/10.46387/bjesr.630955.
JAMA Taşaltın N, Karaca B. ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK. BJESR. 2019;1:24–34.
MLA Taşaltın, Nevin and Bahriye Karaca. “ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 1, no. 1, 2019, pp. 24-34, doi:10.46387/bjesr.630955.
Vancouver Taşaltın N, Karaca B. ORGANIC SOLAR CELL WITH SPDA: AG NANOWIRE NETWORK. BJESR. 2019;1(1):24-3.