Araştırma Makalesi
BibTex RIS Kaynak Göster

Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 8, 29.04.2021

Öz

Bu çalışmada, yüksek yoğunlukta lif levha üretim hattında %50 sarı çam (Pinus sylvestres L), %30 köknar (Abies nordmanniana L), %20 kayın (Fagus orientalis L) R;1.17, X;0.98 ve Y; 0.88 mol üre-formaldehit tutkalı (ÜF) kullanılarak 7.7mmx2100mmx2440 mm HDF levha üretilmiştir. Proseste üretim parametreleri sabit kalmıştır. Tek değişken üç farklı mol oranlarında kullanılan üre formaldehit tutkalı olmuştur. Sıcak pres parametrelerinden pres hızını 950 mm/sn ve pres sıcaklığını 215ºC ve 60 saniye presleme süresi parametrelerinde üretim gerçekleşmiştir. Üretilen A, B, C HDF levhaların yoğunluğuna ve mekanik testlerinin (eğilme mukavemetine, eğilmede elastikiyet modülüne ve levha düzlemine dik çekme mukavemeti) performans testlerine bakılmıştır Her bir test grubundan beş levha ölçülmüştür. HDF levhalarının özgül ağırlığı (A; 870.4 kg/m³, B; 875.6 kg/m³. C; 857.4 kg/m³), mekanik test ölçüm performansları, eğilme mukavemeti (A; 40.97 N/mm², B; 39.90 N/mm², C; 38.08 N/mm²), eğilmede elastikiyet modülü (A; 3814.2 N/mm², B; 3525 N/mm², C; 3356.6 N/mm²), çekme mukavemeti (A; 1.48 N/mm², B; 1.38 N/mm², C; 1.17 N/mm²) gerçekleştirilmiştir. Çalışmanın sonucunda (A;1.17, B;0.98 ve C;0.88) üre formaldehit tutkalı kullanarak üretilen HDF levhalarına mekanik test sonuçlarına göre farklılıklar ortaya konulmuştur. Bu farklılıklar sebebi farklı mol oranlarında kullanılan üre formaldehit tutkalından kaynaklanmaktadır.

Teşekkür

Kastamonu Entegre Ağaç Sanayi Tic. A.Ş, Kastamonu-Samsun Fabrikalar Direktörü Enüs KOÇ’a, yardımlarından dolayı teşekkür ediyorum.

Kaynakça

  • [1] A. S. Angelatos, ‘‘NMR structural elucidation of amino resins’’, Journal of Applied Polymer Science, 91(6):3504–3512. DOI:10.1002/app.13538, 2004.
  • [2] T. Alpar, T. Faczan, I. Racz and Katoli, G, ‘‘MDF/HDF Production from Plantation Wood Species. Drvna Industrıja, 61 (3) 183-191, 2010.
  • [3] N. A. Costa, J. Pereira, J. Ferra, P. Cruz, J. Martins, F. D. Magalhāes, A. Mendes and L. H. Carvalho, ‘‘Scavengers for achieving zero for-maldehyde emission of wood-based panels’’, Wood Science and Technology, 47, 1261–1272, 2013.
  • [4] H. Eroğlu ve M. Usta, ‘‘Lif Levha Üretim Teknolojisi, Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, Trabzon, s. 351, 2000.
  • [5] Faostat, ‘‘Forestry Production and Trade. Food and Agriculture Organization of the United Nations’’, http://www.fao.org/faostat/en/#data/FO, Accessed: 24.01.2020.
  • [6] W. J. Grigsby, J. E.P. Carpenter and R. Sargent, ‘‘Investigating the Extent of Urea Formaldehyde Resin Cure in Medium Density Fiberboard: Resin Extractability and Fiber Effects’’, Journal of Wood Chemistry and Technology Vol; 34, Issue 3, https://doi.org/10.1080/02773813.2013.861850, 2014.
  • [7] W. J. Grigsby, and A. Thumm, ‘‘Resin and wax distribution and mobility during medium density fibreboard manufacture’’, European J. Wood and Wood Products, 70(1–3): 337–348. DOI: 10.1007/s00107-011-0560-0, 2012.
  • [8] W.J. Grigsby, A. G. McDonald, A. Thumm and C. Loxton, ‘‘X-ray photoelectron spectroscopy determination of urea formaldehyde resin coverage on MDF fibre’’, Holz als Roh- und Werkstoff: European Journal of Wood and Wood Industries. 62(5):358-364, 2004.
  • [9] R. Hashim, O. Sulaiman, R.N. Kumar, P. F. Tamyez, R.J. Murphy and Z. Ali, ‘‘Physical and mechanical properties of flame-retardant urea formaldehyde medium density fiberboard’’, Journal of Materials Processing Technology.vol;209, issue;2, pages 635-640. https://doi.org/10.1016/j.jmatprotec.2008.02.036, 2009.
  • [10] S. Kim, ‘‘The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials’’, Constr Build Mater 23(6):2319–2323, 2009.
  • [11] P. Louis Cyr, B. Riedl and X. M. Wang, ‘‘Investigation of Urea-Melamine-Formaldehyde (UMF) resin penetration in Medium-Density Fiberboard (MDF) by High Resolution Confocal Laser Scanning Microscopy’’, Holz als Roh- und Werkstoff: European Journal of Wood and Wood Products. 66(2):129-134, 2008.
  • [12] J. Martins, C. Coelho, J. Ferra, P. Cruz and L. Carvalho, ‘‘Low formaldehyde emission MDF overlaid with wood veneer: bonding problems assessment’’, International Wood Products Journal. Vol;3 pages 1 -31, 2012.
  • [13] A. Mao and M.G. Kim, ‘‘Low mole ratio urea–melamine–formaldehyde resins entailing ıncreased methylene-ether group contents and their formaldehyde emission potentials of wood composite boards’’, BioResources, 8 (3): 4659-4675, 2013.
  • [14] B. D. Park and H. W. Jeong, ‘‘Hydrolytic stability and crystallinity of cured ureaformaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion and Adhesives, 31(6): 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001, 2011.
  • [15] B. D. Park, S. M. Lee and J. K. Roh, ‘‘Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyde resin’’, European Journal of Wood and Wood Products, 67(1): 121–123. DOI: 10.1007/s00107-008-0277-x, 2009.
  • [16] E. Roffael, B. Dix, C. Behn and G. Bär, ‘‘Use of UF-bonded recycling particle- and fibreboards in MDF-production’’, European Journal of Wood and Wood Products vol; 68, pages121–128, 2010.
  • [17] E. Roffael and C. Behn, ‘‘On the influence of binder content in particleboards bonded with resins of high and low molar ratio on the formaldehyde release measured by the perforator method’’, European Journal of Wood and Wood Products vol; 70, pages819–822, 2012.
  • [18] F. R. Sani and A. A. Enayiti, ‘‘Reduced use of urea-formaldehyde resin and press time due to the use of melamine resin-impregnated paper waste in MDF’’, Journal of the Indian Academy of Wood Science. vol. 17, pages100–105, 2020.
  • [19] TS 642-ISO 554, ‘‘Kondisyonlama ve/veya Deney İçin Standart Atmosfer – Özellikler’’, TSE, Ankara, 1997.
  • [20] TS-EN 316, ‘‘Odundan mamul lif levhalar-tarifler, sınıflandırma ve semboller’’, TSE, Ankara, 2011.
  • [21] TS EN 310 ‘‘Ahşap esaslı-paneller, eğilme ve eğilme dayanımı esneklik modüllerinin belirlenmesi’’, TSE, Ankara, 1999.
  • [22] TS EN 319 ‘‘Yonga levhalar ve suntalar, levha düzlemine dik çekme dayanımının belirlenmesi’’, TSE, Ankara, 1999.
  • [23] TS-EN 323, ‘‘Ahşap esaslı levhalar-birim hacim ağırlığının tayini’’, TSE, Ankara, 1999.
  • [24] TS EN 324-1, ‘‘Ahşap esaslı levhalar-levha boyutlarının tayini-bölüm 1: kalınlık, genişlik ve uzunluğun tayini’’, TSE, Ankara, 1999.
  • [25] TS EN 325, ‘‘Ahşap esaslı levhalar-deney numunelerinin boyutlarının tayini. TSE, Ankara, 2008.
  • [26] TS EN 326-1, ‘‘Ahşap esaslı levhalar-numune alma kesme ve muayene bölüm 1: deney numunelerinin seçimi, kesimi ve deney sonuçlarının gösterilmesi’’, TSE, Ankara, 1999.
  • [27] TS 64-1 EN 622-1, ‘‘Lif levhalar özellikler-bölüm 1: genel özellikler’’, TSE, Ankara, 2005.
  • [28] C. Xing, B. Riedl, A. Cloutier and G. He, ‘‘The effect of urea-formaldehyde resin pre-cure on the internal bond of medium density fiberboard’’, Holz als Roh- und Werkstoff vol:62, pages 439–444, 2004.
  • [29] Z. Quea, T. Furunoa, S. Katoha and Y. Nishinob, ‘‘Effects of urea–formaldehyde resin mole ratio on the properties of particleboard’’, Building and Environment 42, pages1257–1263, 2007.

Effects of Urea–Formaldehyde Resin Mole Ratio on the Mechanical Properties of High-Density Fiberboards (HDF)

Yıl 2021, Cilt: 3 Sayı: 1, 1 - 8, 29.04.2021

Öz

In this study, 60% yellow pine (Pinus sylvestres L), 20% fir (Abies nordmanniana L), 20% beech (Fagus orientalis L) were used biomass. The production of high-density fiberboards was used (A; 1.17, B; 0.98 and C; 0.88) three different moles urea-formaldehyde resins. HDF boards were produced in the production line. These boards were sized 7.7mmx2100mmx2440mm. Production parameters remained constant in the HDF line process. The only variable were urea formaldehyde resins used in three different molar ratios. The productions were manufactured in pressing speed of 950 mm/sec and pressing temperature 218ºC and 58 seconds pressing time in the continue hot press. The density and mechanical tests of the produced A, B, C HDF boards (bending strength (MOR), modulus of elasticity in bending (MOE) and tensile strength perpendicular to the plane of the plate (IB)) were examined. Five boards were measured from each test group. Density of HDF boards (A; 870.4 kg/m³, B; 875.6 kg/m³, C; 857.4 kg/m³), mechanical test measurement performances, bending strength (MOR) (A; 40.97 N/mm², B; 39.90 N/mm², C; 38.08 N/mm²), modulus of elasticity in bending (MOE) (A; 3814.2 N/mm², B; 3525 N/mm², C; 3356.6 N/mm²), tensile strength (IB) (A; 1.48 N/mm², B; 1.38 N/mm², C; 1.17 N/mm²). As a result of the study (A; 1.17, B; 0.98 and C; 0.88), differences were shown according to the mechanical test results on HDF boards produced using urea-formaldehyde glue. These differences were due to urea formaldehyde glue used in different mole ratios.

Kaynakça

  • [1] A. S. Angelatos, ‘‘NMR structural elucidation of amino resins’’, Journal of Applied Polymer Science, 91(6):3504–3512. DOI:10.1002/app.13538, 2004.
  • [2] T. Alpar, T. Faczan, I. Racz and Katoli, G, ‘‘MDF/HDF Production from Plantation Wood Species. Drvna Industrıja, 61 (3) 183-191, 2010.
  • [3] N. A. Costa, J. Pereira, J. Ferra, P. Cruz, J. Martins, F. D. Magalhāes, A. Mendes and L. H. Carvalho, ‘‘Scavengers for achieving zero for-maldehyde emission of wood-based panels’’, Wood Science and Technology, 47, 1261–1272, 2013.
  • [4] H. Eroğlu ve M. Usta, ‘‘Lif Levha Üretim Teknolojisi, Karadeniz Teknik Üniversitesi, Orman Fakültesi, Genel Yayın No: 200, Fakülte Yayın No: 30, Trabzon, s. 351, 2000.
  • [5] Faostat, ‘‘Forestry Production and Trade. Food and Agriculture Organization of the United Nations’’, http://www.fao.org/faostat/en/#data/FO, Accessed: 24.01.2020.
  • [6] W. J. Grigsby, J. E.P. Carpenter and R. Sargent, ‘‘Investigating the Extent of Urea Formaldehyde Resin Cure in Medium Density Fiberboard: Resin Extractability and Fiber Effects’’, Journal of Wood Chemistry and Technology Vol; 34, Issue 3, https://doi.org/10.1080/02773813.2013.861850, 2014.
  • [7] W. J. Grigsby, and A. Thumm, ‘‘Resin and wax distribution and mobility during medium density fibreboard manufacture’’, European J. Wood and Wood Products, 70(1–3): 337–348. DOI: 10.1007/s00107-011-0560-0, 2012.
  • [8] W.J. Grigsby, A. G. McDonald, A. Thumm and C. Loxton, ‘‘X-ray photoelectron spectroscopy determination of urea formaldehyde resin coverage on MDF fibre’’, Holz als Roh- und Werkstoff: European Journal of Wood and Wood Industries. 62(5):358-364, 2004.
  • [9] R. Hashim, O. Sulaiman, R.N. Kumar, P. F. Tamyez, R.J. Murphy and Z. Ali, ‘‘Physical and mechanical properties of flame-retardant urea formaldehyde medium density fiberboard’’, Journal of Materials Processing Technology.vol;209, issue;2, pages 635-640. https://doi.org/10.1016/j.jmatprotec.2008.02.036, 2009.
  • [10] S. Kim, ‘‘The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials’’, Constr Build Mater 23(6):2319–2323, 2009.
  • [11] P. Louis Cyr, B. Riedl and X. M. Wang, ‘‘Investigation of Urea-Melamine-Formaldehyde (UMF) resin penetration in Medium-Density Fiberboard (MDF) by High Resolution Confocal Laser Scanning Microscopy’’, Holz als Roh- und Werkstoff: European Journal of Wood and Wood Products. 66(2):129-134, 2008.
  • [12] J. Martins, C. Coelho, J. Ferra, P. Cruz and L. Carvalho, ‘‘Low formaldehyde emission MDF overlaid with wood veneer: bonding problems assessment’’, International Wood Products Journal. Vol;3 pages 1 -31, 2012.
  • [13] A. Mao and M.G. Kim, ‘‘Low mole ratio urea–melamine–formaldehyde resins entailing ıncreased methylene-ether group contents and their formaldehyde emission potentials of wood composite boards’’, BioResources, 8 (3): 4659-4675, 2013.
  • [14] B. D. Park and H. W. Jeong, ‘‘Hydrolytic stability and crystallinity of cured ureaformaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion and Adhesives, 31(6): 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001, 2011.
  • [15] B. D. Park, S. M. Lee and J. K. Roh, ‘‘Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyde resin’’, European Journal of Wood and Wood Products, 67(1): 121–123. DOI: 10.1007/s00107-008-0277-x, 2009.
  • [16] E. Roffael, B. Dix, C. Behn and G. Bär, ‘‘Use of UF-bonded recycling particle- and fibreboards in MDF-production’’, European Journal of Wood and Wood Products vol; 68, pages121–128, 2010.
  • [17] E. Roffael and C. Behn, ‘‘On the influence of binder content in particleboards bonded with resins of high and low molar ratio on the formaldehyde release measured by the perforator method’’, European Journal of Wood and Wood Products vol; 70, pages819–822, 2012.
  • [18] F. R. Sani and A. A. Enayiti, ‘‘Reduced use of urea-formaldehyde resin and press time due to the use of melamine resin-impregnated paper waste in MDF’’, Journal of the Indian Academy of Wood Science. vol. 17, pages100–105, 2020.
  • [19] TS 642-ISO 554, ‘‘Kondisyonlama ve/veya Deney İçin Standart Atmosfer – Özellikler’’, TSE, Ankara, 1997.
  • [20] TS-EN 316, ‘‘Odundan mamul lif levhalar-tarifler, sınıflandırma ve semboller’’, TSE, Ankara, 2011.
  • [21] TS EN 310 ‘‘Ahşap esaslı-paneller, eğilme ve eğilme dayanımı esneklik modüllerinin belirlenmesi’’, TSE, Ankara, 1999.
  • [22] TS EN 319 ‘‘Yonga levhalar ve suntalar, levha düzlemine dik çekme dayanımının belirlenmesi’’, TSE, Ankara, 1999.
  • [23] TS-EN 323, ‘‘Ahşap esaslı levhalar-birim hacim ağırlığının tayini’’, TSE, Ankara, 1999.
  • [24] TS EN 324-1, ‘‘Ahşap esaslı levhalar-levha boyutlarının tayini-bölüm 1: kalınlık, genişlik ve uzunluğun tayini’’, TSE, Ankara, 1999.
  • [25] TS EN 325, ‘‘Ahşap esaslı levhalar-deney numunelerinin boyutlarının tayini. TSE, Ankara, 2008.
  • [26] TS EN 326-1, ‘‘Ahşap esaslı levhalar-numune alma kesme ve muayene bölüm 1: deney numunelerinin seçimi, kesimi ve deney sonuçlarının gösterilmesi’’, TSE, Ankara, 1999.
  • [27] TS 64-1 EN 622-1, ‘‘Lif levhalar özellikler-bölüm 1: genel özellikler’’, TSE, Ankara, 2005.
  • [28] C. Xing, B. Riedl, A. Cloutier and G. He, ‘‘The effect of urea-formaldehyde resin pre-cure on the internal bond of medium density fiberboard’’, Holz als Roh- und Werkstoff vol:62, pages 439–444, 2004.
  • [29] Z. Quea, T. Furunoa, S. Katoha and Y. Nishinob, ‘‘Effects of urea–formaldehyde resin mole ratio on the properties of particleboard’’, Building and Environment 42, pages1257–1263, 2007.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Osman Çamlıbel 0000-0002-8766-1316

Mehmet Akgül Bu kişi benim 0000-0002-1492-3979

Yayımlanma Tarihi 29 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 1

Kaynak Göster

APA Çamlıbel, O., & Akgül, M. (2021). Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 3(1), 1-8.
AMA Çamlıbel O, Akgül M. Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri. Müh.Bil.ve Araş.Dergisi. Nisan 2021;3(1):1-8.
Chicago Çamlıbel, Osman, ve Mehmet Akgül. “Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 3, sy. 1 (Nisan 2021): 1-8.
EndNote Çamlıbel O, Akgül M (01 Nisan 2021) Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri. Mühendislik Bilimleri ve Araştırmaları Dergisi 3 1 1–8.
IEEE O. Çamlıbel ve M. Akgül, “Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri”, Müh.Bil.ve Araş.Dergisi, c. 3, sy. 1, ss. 1–8, 2021.
ISNAD Çamlıbel, Osman - Akgül, Mehmet. “Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri”. Mühendislik Bilimleri ve Araştırmaları Dergisi 3/1 (Nisan 2021), 1-8.
JAMA Çamlıbel O, Akgül M. Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri. Müh.Bil.ve Araş.Dergisi. 2021;3:1–8.
MLA Çamlıbel, Osman ve Mehmet Akgül. “Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, c. 3, sy. 1, 2021, ss. 1-8.
Vancouver Çamlıbel O, Akgül M. Üre-Formaldehit Reçine Mol Oranının Yüksek Yoğunlukta Lif Levhanın (HDF) Mekanik Özellikleri Üzerine Etkileri. Müh.Bil.ve Araş.Dergisi. 2021;3(1):1-8.