Research Article
BibTex RIS Cite

Uzaktan Erişimli LabVIEW Tabanlı Sera Otomasyonu Uygulaması

Year 2022, Volume: 4 Issue: 2, 155 - 163, 26.10.2022
https://doi.org/10.46387/bjesr.1119141

Abstract

Seralarda yetiştirilen bitkilerden elde edilecek ürünlerin verimini artırmak için çeşitli otomatik kontrol sistemleri kurulmuştur. Bu kontrol sistemleri, hızlı devreye girerek belirlenen problemlerin otomatik çözümünün sağlanmasında, sera içindeki sıcaklık ve nem değerlerinin kontrol edilmesinde ve sistemin stabil çalışmasında ön plana çıkmaktadır. Bu çalışmada, NI MyRIO kontrol kartı ile uzaktan erişimli sera otomasyonu uygulaması gerçekleştirilmiş ve sistem verileri, LabVIEW (Laboratory Virtual Instrument Engineering Workbench ) grafik programı ile gerçek zamanlı olarak izlenip kontrol edilmiştir. Serada yetiştirilecek bitkilerin su, sıcaklık, nem ve uygun fotosentez ışık oranı gibi değerleri sistemde kullanılan sensörler tarafından ölçülerek belirlenir ve NI MyRIO kontrol kartı ile LabVIEW arayüz programı ile kullanıcıya gösterilmektedir.

References

  • [1] R. R.Shamshiri, F. Kalantari F, K. C.Ting, K. R. Thorp, I. A. Hameed, C. Weltzien, and et al. “Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture”, Int J Agric & Biol Eng, vol. 11, no.1, pp. 1–22, 2018.
  • [2] R. L., Sumalan, N. Stroia, Moga D., Muresan V., Lodin A., Vintila T., & Popescu C. A., “ A Cost-Effective Embedded Platform for Greenhouse Environment Control and Remote Monitoring”, Agronomy, vol.10, no.7, pp.2-36, 2020.
  • [3] P. Roop, K. V.Harish, U. Moin, “An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment”, Journal of Biosystems Engineering, vol. 42(1), pp.23-43, 2017.
  • [4] Ö. Alpay and E. Erdem, "Climate Control of an Smart Greenhouse based on Android”, 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1-5, 2018.
  • [5] J. Oscar, A. Gustav, “Smart Greenhouse, A microcontroller based architecture for autonomous and remote control”, A thesis submitted for the degree of B.Sc. Mechatronic Engineering, Halmstad University School of Information Technology, Halmstad,Sweden, 2020.
  • [6] I. Lapyga, “Application of Light Sensors Amplifier and Wireless Networking Sensor for Ambient Light Data to the Android Platform”, International Journal of Recent Technology and Engineering (IJRTE), vol.8, no. 3, pp.930-935, 2019.
  • [7] D. J. A.Rustia, L. C. Erh, J.Chung, Y. Zhuang, Y.-J., J.-C. Hsu, and T.-T. Lin, “Application of an Image and Environmental Sensor Network for Automated Greenhouse Insect Pest Monitoring”, Journal of Asia-Pacific Entomology. vol. 23, no.1, pp. 17-28,2019.
  • [8] A. S.Wael, and A. Z Basem, “Evolution of microcontroller-based remote monitoring system applications”, International Journal of Electrical and Computer Engineering (IJECE). vol. 9, no. 4, pp. 2354-2364, 2019.
  • [9] W. Cai, X. Wen, and Q.Tu, “Designing an intelligent greenhouse monitoring system based on the internet of things”, Applied Ecology And Environmental Research, vol.17, no. 4, pp.8449-8464, 2019.
  • [10] H. G., Eugen, and D. A. Gheorghe, “Greenhouse Envıronment Monitoring and Control: State of The Art And Current Trends”, Environmental Engineering and Management Journal, vol. 17, no.2, pp. 399-416, 2018.
  • [11] I.E.H. Arfeen, and A.E.A.E Suliman, “Real-Time Monitoring for Data Greenhouse Based on Raspberry Pi Technology”, Open Access Library Journal, vol. 6, no.3, pp. 1-8, 2019.
  • [12] E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, “Energy effcient operation and modeling for greenhouses: A literature review”, Renewable and Sustainable Energy Reviews, vol.117, 109480, pp. 1-15, 2020.
  • [13] M. Taki., M.S. Abdanan, A. Rohani, M. Rahnama, and M. Rahmati-Joneidabad, “Applied machine learning in greenhouse simulation; New application and analysis”, Informatıon Processing In Agriculture vol. 5, pp.253–268, 2018.
  • [14] D. Ma, N. Carpenter, S. Amatya, H. Maki, L. Wang, L. Zhang, and J. Jin, “Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping”, Computers and Electronics in Agriculture, vol.166, pp.1-9, 2019.
  • [15] Ö. Alpay, and E. Erdem, “The Control of Greenhouses Based on Fuzzy Logic Using Wireless Sensor Networks”, International Journal of Computational Intelligence Systems, vol. 12, no. 1, pp.190-203, 2019.
  • [16] C. M. Angelopoulos, G. Filios, S. Nikoletseas, and T. P. Raptis, “Keeping Data at the Edge of Smart Irrigation Networks: A Case Study in Strawberry Greenhouses”, Computer Networks, 107039, pp.1-10, 2019.
  • [17] Š. Koprda, M. Magdin, and M. Munk, “Implementation of microcontroller arduino in irrigation system,” in Lecture Notes in Computer Science, vol. 9771, pp. 133–144, 2016.
  • [18] M. A. Akkaş, and R. Sokullu, “An IoT-based greenhouse monitoring system with Micaz motes”, Procedia Computer Science, vol. 113, pp. 603–608, 2017.
  • [19] J. Li, “Design and Realization of Greenhouse Sensor Intelligent Management System Based on Internet of Things”, International Journal of Online Engineering (iJOE), vol.13, no.5, pp. 80-96, 2017.
  • [20] C. Cai, H. Liu, and W.Yang, “Design and Development of a Greenhouse Remote Monitoring System Based on WinCE”. Meteorological and Environmental Research, vol. 9, no.4, pp. 106-111, 2018.
  • [21] I. George, V. Gheorghe, I. Filip, B. Marian, V. Marian, and M. Eugen, “Natural Ambient Light Monıtorıng In Greenhouses With Polyethylene Film Roof”, Engineering Hunedoara – International Journal of Engineering Tome XV, fascicule 3 pp. 197-203, 2017.
  • [22] J.Xu, F. Dai, Y. Xu, C. Yao, and C. Li, “ Wireless power supply technology for uniform magnetic field of intelligent greenhouse sensors”. Computers and Electronics in Agriculture, vol.156, pp. 203–208, 2019.
  • [23] B. Kocaman, and S. Rüstemli, “Comparison of LED and HPS luminaires in Terms of Energy Savings at Tunnel Lighting”, Light & Engineering, vol. 27, no.3, pp. 67–74, 2019.
  • [24] B. Kocaman, “Energy Efficiency in Lighting for Historical Buildings: Case Study of The El Aman Caravanserai in Province of Bitlis”, Turkey, Light & Engineering, vol. 28, no.4, pp. 68–76, 2020.
  • [25] S. Rustemli, and Y. Demir, “Сравнительный анализ ламп в осветительных установках дорожного освещения. Журнал” «Светотехника» №4, cт: pp.56-62, 2021.
  • [26] S.B. Efe, and D. Varhan,“Interior Lighting of A Historical Building By Using Led Luminaires: A Case Study of Fatih Paşa Mosque”, Light & Engineering, vol. 28, no.4, pp. 77–83, 2020.
  • [27] S. Rustemli, and Y. Demir, “Comparative Analysis of Lighting Installations Used In Road Illumination”, Light & Engineering, vol. 29, no.6, pp. 86–94, 2021.

Remote Access Greenhouse Automation Application Based On LabVIEW

Year 2022, Volume: 4 Issue: 2, 155 - 163, 26.10.2022
https://doi.org/10.46387/bjesr.1119141

Abstract

Various automatic control systems have been established in order to increase the yield of the products to be obtained from the plants grown in the greenhouses. These control systems come into prominence in ensuring the automatic solution of the determined problems by being activated quickly, controlling the temperature and moisture values in the greenhouse and in the stable operation of the system. In this study, remote access greenhouse automation application was performed with the NI MyRIO control card, and system data was monitored and controlled in real time via the Laboratory Virtual Instrument Engineering Workbench (LabVIEW) graphical program. The values of the plants to be grown in the greenhouse such as water, temperature, moisture and appropriate photosynthesis light ratio are measured and determined by the sensors used in the system and shown to the user with the LabVIEW interface program with the NI MyRIO control card.

References

  • [1] R. R.Shamshiri, F. Kalantari F, K. C.Ting, K. R. Thorp, I. A. Hameed, C. Weltzien, and et al. “Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture”, Int J Agric & Biol Eng, vol. 11, no.1, pp. 1–22, 2018.
  • [2] R. L., Sumalan, N. Stroia, Moga D., Muresan V., Lodin A., Vintila T., & Popescu C. A., “ A Cost-Effective Embedded Platform for Greenhouse Environment Control and Remote Monitoring”, Agronomy, vol.10, no.7, pp.2-36, 2020.
  • [3] P. Roop, K. V.Harish, U. Moin, “An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment”, Journal of Biosystems Engineering, vol. 42(1), pp.23-43, 2017.
  • [4] Ö. Alpay and E. Erdem, "Climate Control of an Smart Greenhouse based on Android”, 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1-5, 2018.
  • [5] J. Oscar, A. Gustav, “Smart Greenhouse, A microcontroller based architecture for autonomous and remote control”, A thesis submitted for the degree of B.Sc. Mechatronic Engineering, Halmstad University School of Information Technology, Halmstad,Sweden, 2020.
  • [6] I. Lapyga, “Application of Light Sensors Amplifier and Wireless Networking Sensor for Ambient Light Data to the Android Platform”, International Journal of Recent Technology and Engineering (IJRTE), vol.8, no. 3, pp.930-935, 2019.
  • [7] D. J. A.Rustia, L. C. Erh, J.Chung, Y. Zhuang, Y.-J., J.-C. Hsu, and T.-T. Lin, “Application of an Image and Environmental Sensor Network for Automated Greenhouse Insect Pest Monitoring”, Journal of Asia-Pacific Entomology. vol. 23, no.1, pp. 17-28,2019.
  • [8] A. S.Wael, and A. Z Basem, “Evolution of microcontroller-based remote monitoring system applications”, International Journal of Electrical and Computer Engineering (IJECE). vol. 9, no. 4, pp. 2354-2364, 2019.
  • [9] W. Cai, X. Wen, and Q.Tu, “Designing an intelligent greenhouse monitoring system based on the internet of things”, Applied Ecology And Environmental Research, vol.17, no. 4, pp.8449-8464, 2019.
  • [10] H. G., Eugen, and D. A. Gheorghe, “Greenhouse Envıronment Monitoring and Control: State of The Art And Current Trends”, Environmental Engineering and Management Journal, vol. 17, no.2, pp. 399-416, 2018.
  • [11] I.E.H. Arfeen, and A.E.A.E Suliman, “Real-Time Monitoring for Data Greenhouse Based on Raspberry Pi Technology”, Open Access Library Journal, vol. 6, no.3, pp. 1-8, 2019.
  • [12] E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, “Energy effcient operation and modeling for greenhouses: A literature review”, Renewable and Sustainable Energy Reviews, vol.117, 109480, pp. 1-15, 2020.
  • [13] M. Taki., M.S. Abdanan, A. Rohani, M. Rahnama, and M. Rahmati-Joneidabad, “Applied machine learning in greenhouse simulation; New application and analysis”, Informatıon Processing In Agriculture vol. 5, pp.253–268, 2018.
  • [14] D. Ma, N. Carpenter, S. Amatya, H. Maki, L. Wang, L. Zhang, and J. Jin, “Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping”, Computers and Electronics in Agriculture, vol.166, pp.1-9, 2019.
  • [15] Ö. Alpay, and E. Erdem, “The Control of Greenhouses Based on Fuzzy Logic Using Wireless Sensor Networks”, International Journal of Computational Intelligence Systems, vol. 12, no. 1, pp.190-203, 2019.
  • [16] C. M. Angelopoulos, G. Filios, S. Nikoletseas, and T. P. Raptis, “Keeping Data at the Edge of Smart Irrigation Networks: A Case Study in Strawberry Greenhouses”, Computer Networks, 107039, pp.1-10, 2019.
  • [17] Š. Koprda, M. Magdin, and M. Munk, “Implementation of microcontroller arduino in irrigation system,” in Lecture Notes in Computer Science, vol. 9771, pp. 133–144, 2016.
  • [18] M. A. Akkaş, and R. Sokullu, “An IoT-based greenhouse monitoring system with Micaz motes”, Procedia Computer Science, vol. 113, pp. 603–608, 2017.
  • [19] J. Li, “Design and Realization of Greenhouse Sensor Intelligent Management System Based on Internet of Things”, International Journal of Online Engineering (iJOE), vol.13, no.5, pp. 80-96, 2017.
  • [20] C. Cai, H. Liu, and W.Yang, “Design and Development of a Greenhouse Remote Monitoring System Based on WinCE”. Meteorological and Environmental Research, vol. 9, no.4, pp. 106-111, 2018.
  • [21] I. George, V. Gheorghe, I. Filip, B. Marian, V. Marian, and M. Eugen, “Natural Ambient Light Monıtorıng In Greenhouses With Polyethylene Film Roof”, Engineering Hunedoara – International Journal of Engineering Tome XV, fascicule 3 pp. 197-203, 2017.
  • [22] J.Xu, F. Dai, Y. Xu, C. Yao, and C. Li, “ Wireless power supply technology for uniform magnetic field of intelligent greenhouse sensors”. Computers and Electronics in Agriculture, vol.156, pp. 203–208, 2019.
  • [23] B. Kocaman, and S. Rüstemli, “Comparison of LED and HPS luminaires in Terms of Energy Savings at Tunnel Lighting”, Light & Engineering, vol. 27, no.3, pp. 67–74, 2019.
  • [24] B. Kocaman, “Energy Efficiency in Lighting for Historical Buildings: Case Study of The El Aman Caravanserai in Province of Bitlis”, Turkey, Light & Engineering, vol. 28, no.4, pp. 68–76, 2020.
  • [25] S. Rustemli, and Y. Demir, “Сравнительный анализ ламп в осветительных установках дорожного освещения. Журнал” «Светотехника» №4, cт: pp.56-62, 2021.
  • [26] S.B. Efe, and D. Varhan,“Interior Lighting of A Historical Building By Using Led Luminaires: A Case Study of Fatih Paşa Mosque”, Light & Engineering, vol. 28, no.4, pp. 77–83, 2020.
  • [27] S. Rustemli, and Y. Demir, “Comparative Analysis of Lighting Installations Used In Road Illumination”, Light & Engineering, vol. 29, no.6, pp. 86–94, 2021.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Behçet Kocaman 0000-0002-1432-0959

Mehmet Fatih Güler 0000-0003-3291-407X

Publication Date October 26, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Kocaman, B., & Güler, M. F. (2022). Remote Access Greenhouse Automation Application Based On LabVIEW. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 4(2), 155-163. https://doi.org/10.46387/bjesr.1119141
AMA Kocaman B, Güler MF. Remote Access Greenhouse Automation Application Based On LabVIEW. BJESR. October 2022;4(2):155-163. doi:10.46387/bjesr.1119141
Chicago Kocaman, Behçet, and Mehmet Fatih Güler. “Remote Access Greenhouse Automation Application Based On LabVIEW”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 4, no. 2 (October 2022): 155-63. https://doi.org/10.46387/bjesr.1119141.
EndNote Kocaman B, Güler MF (October 1, 2022) Remote Access Greenhouse Automation Application Based On LabVIEW. Mühendislik Bilimleri ve Araştırmaları Dergisi 4 2 155–163.
IEEE B. Kocaman and M. F. Güler, “Remote Access Greenhouse Automation Application Based On LabVIEW”, BJESR, vol. 4, no. 2, pp. 155–163, 2022, doi: 10.46387/bjesr.1119141.
ISNAD Kocaman, Behçet - Güler, Mehmet Fatih. “Remote Access Greenhouse Automation Application Based On LabVIEW”. Mühendislik Bilimleri ve Araştırmaları Dergisi 4/2 (October 2022), 155-163. https://doi.org/10.46387/bjesr.1119141.
JAMA Kocaman B, Güler MF. Remote Access Greenhouse Automation Application Based On LabVIEW. BJESR. 2022;4:155–163.
MLA Kocaman, Behçet and Mehmet Fatih Güler. “Remote Access Greenhouse Automation Application Based On LabVIEW”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 4, no. 2, 2022, pp. 155-63, doi:10.46387/bjesr.1119141.
Vancouver Kocaman B, Güler MF. Remote Access Greenhouse Automation Application Based On LabVIEW. BJESR. 2022;4(2):155-63.