Research Article
BibTex RIS Cite

A Geometrical Interpretation of Production Functions in Economics in terms of Second Fundamental Form

Year 2023, Volume: 1 Issue: 2, 65 - 72, 30.11.2023

Abstract

The two well-known production models in microeconomics are Cobb-Douglas and ACMS production functions. We study such production functions with 2-inputs in terms of the differential-geometrical properties of their graphs. In particular, we investigate the production functions when their graphs have the second fundamental forms of constant length. We obtain that the ACMS production surface has the second fundamental forms of constant length if and only if the ACMS production function is a perfect substitute. Furthermore, in the case of Cobb-Douglas production function, we provide a non-existence result.

Project Number

919B012216176

References

  • R. W. Shephard, Theory of Cost and Production Functions. New Jersey: Princeton University Press, 1970.
  • S. K. Mishra, “A Brief History of Production Functions,” IUP J. Manage. Econom., vol., 8, no. 4, pp. 6–34, 2010.
  • G. E. Vilcu, “A Geometrical Perspective on the Generalized Cobb-Douglas Production Functions,” Appl. Math. Letters, vol. 24, pp. 777–783, May 2011, doi: 10.1016/j.aml.2010.12.038.
  • J. Barlow and I. Vodenska, “Socio-Economic Impact of the Covid-19 Pandemic in the U.S.,” Entropy, vol. 23, 673, May 2021, doi.org/10.3390/e23060673.
  • A. Pichler, M. Pangallo, R. M. del Rio-Chanona, L. Francois, and J. D. Farmer, “Production Networks and Epidemic Spreading: How to Restart the UK Economy?,” arXiv:2005.10585v1 [econ.GN], May 2020.
  • P. Mlodkowski, “Estimating Production Function Before Covid-19 Pandemic in Europe,” Eur. Integr. Stud., vol. 14, pp. 104–116, Oct. 2020.
  • E. Chassot, D. Gascuel, and A. Colomb, “Impact of Trophic Interactions on Production Functions and on the Ecosystem Response to Fishing: A Simulation Approach,” Aquat. Living Resour., vol. 18, no. 1, pp. 1–13, Jan.-Mar. 2005, doi.org/10.1051/alr:2005001.
  • I. B. Adinya, B. O. Offem, and G. U. Ikpi, “Application of a Stochastic Frontier Production Function for Measurement and Comparision of Technical Efficiency of Mandarin Fish and Clown Fish Production in Lowlands Reservoirs, Ponds and Dams of Cross River State, Nigeria,” J. Anim. and Plant Sci., vol. 21, no. 3, pp. 595–600, Feb. 2011.
  • S. T. Cooper and E. Cohn, “Estimation of a Frontier Production Function for the South Carolina Educational Process,” Econ. Educ. Rev., vol. 16, no. 3, pp. 313–327, June 1997, doi.org/10.1016/S0272-7757(96)00077-5.
  • M. E. Da Silva Freire and J. J. R. F. Da Silva, “The Application of Production Functions to the Higher Education System-Some Examples from Portuguese Universities,” High. Educ., vol. 4, no. 4, pp. 447–460, Nov. 1975.
  • T. G. Gowing, “Technical Change and Scale Economies in an Engineering Production Function: The Case of Steam Electric Power,” J. Industrial Econom., vol. 23, no. 2, 135–152, Dec. 1974.
  • J. Marsden, D. Pingry, and A. Whinston, “Engineering Foundations of Production Functions,” J. Econom. Th., vol. 9, no. 2, pp. 124–140, Oct. 1974, doi.org/10.1016/0022-0531(74)90062-3.
  • B. Y. Chen, “On Some Geometric Properties of h-Homogeneous Production Function in Microeconomics,” Kragujevac J. Math., vol. 35, no. 3, pp. 343–357, June 2011.
  • M. Zakhirov, “Econometric and Geometric Analysis of Cobb-Douglas and CES Production Functions,” ROMAI J., vol. 1, pp. 237–242, June 2005.
  • C. A. Ioan, “Applications of the Space Differential Geometry at the Study of Production Functions,” EuroEconomica, vol. 18, pp. 30–38, June 2007.
  • A. D. Vilcu and G. E. Vilcu, “On Some Geometric Properties of the Generalized CES Production Functions,” Appl. Math. Comput., vol. 218, pp. 124–129, Sep. 2011, doi 10.1016/j.amc.2011.05.061.
  • B. Y. Chen, “On Some Geometric Properties of Quasi-Sum Production Models,” J. Math. Anal. Appl., vol. 392, no. 2, pp. 192–199, Aug. 2012, doi.org/10.1016/j.jmaa.2012.03.011.
  • B. Y. Chen, “Geometry of Quasi-Sum Production Functions with Constant Elasticity of Substitution Property,” J. Adv. Math. Stud., vol. 5, no. 2, pp. 90–97, June 2012.
  • B. Y. Chen, “Classification of Homothetic Functions with Constant Elasticity of Substitution and Its Geometric Applications,” Int. Electron. J. Geom., vol. 5, no. 2, pp. 67–78, Oct. 2012.
  • B. Y. Chen, “An Explicit Formula of Hessian Determinants of Composite Functions and Its Applications,” Kragujevac J. Math., vol. 36, pp. 1–14, June 2012.
  • B. Y. Chen, “Solutions to Homogeneous Monge-Ampere Equations of Homothetic Functions and Their Applications to Production Models in Economics,” J. Math. Anal. Appl., vol. 411, pp. 223–229, Mar. 2014, doi.org/10.1016/j.jmaa.2013.09.029.
  • B. Y. Chen and G. E. Vilcu, “Geometric Classifications of Homogeneous Production Functions,” Appl. Math. Comput., vol. 225, pp. 345–351, Dec. 2013, https://doi.org/10.1016/j.amc.2013.09.052.
  • B. Y. Chen, S. Decu, and L. Verstraelen, “Notes on Isotropic Geometry of Production Models,” Kragujevac J. Math., vol. 38, pp. 23–33, June 2014.
  • B. Y. Chen, A. D. Vilcu, and G. E. Vilcu, “Classification of Graph Surfaces Induced by Weighted-Homogeneous Functions Exhibiting Vanishing Gaussian Curvature,” Mediterr. J. Math., vol. 19, no. 162, June 2022, doi.org/10.1007/s00009-022-02106-2.
  • H. Alodan, B. Y. Chen, S. Deshmukh, and G. E. Vilcu, “On Some Geometric Properties of Quasi-Product Production Models,” J. Math. Anal. Appl., vol. 474, pp. 693–711, June 2019, https://doi.org/10.1016/j.jmaa.2019.01.072.
  • H. Alodan, B. Y. Chen, S. Deshmukh, and G. E. Vilcu, “Solution of the System of Nonlinear PDEs Characterizing CES Property under Quasi-Homogeneity Conditions,” Adv. Differ. Equ., vol. 257, May 2021, doi.org/10.1186/s13662-021-03417-6.
  • M. E. Aydın and M. Ergüt, “Homothetic Functions with Allen’s Perspective and Its Geometric Applications,” Kragujevac J. Math., vol. 38, pp. 185–194, June 2014.
  • M. E. Aydın and A. Mihai, “Classification of Quasi-Sum Production Functions with Allen Determinants,” Filomat, vol. 29, pp. 1351–1359, June 2015.
  • M. E. Aydın and A. Mihai, “Translation Hypersurfaces and Tzitzeica Translation Hypersurfaces of the Euclidean Space,” Proc. Rom. Acad. Series A, vol. 16, no. 4, pp. 477–483, Oct.-Dec. 2015.
  • E. Yılmaz, M. E., Aydın, and T. Gülşen, “A Certain Class of Surfaces on Product Time Scales with Interpretations from Economics,” Filomat, vol. 32, no. 15, pp. 5297–5306, Dec. 2018.
  • X. Wang and Y. Fu, “Some Characterizations of the Cobb-Douglas and CES Production Functions in Microeconomics,” Abstr. Appl. Anal., Dec. (2013), Art. ID 761832, 6 pages, doi.org/10.1155/2013/761832.
  • Y. Fu and W. G. Wang, “Geometric Characterizations of Quasi-Product Production Models in Economics,” Filomat, vol. 31, no. 6, pp. 1601–1609, June 2017, doi.org 10.2298/FIL1706601F.
  • B. Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications. NJ Hackensack: World Scientific Ltd., 2011.
  • J. Weingarten, “Ueber eine Klasse auf Einander Abwickelbarer Flachen,” J. Reine Angew. Math., vol. 59, pp. 382–393, Dec. 1861.
  • A. P. Barreto, F. Fontenele and L. Hartmann, “Rotational Surfaces with Second Fundamental Form of Constant Length,” arXiv:1812.08676v1 [math.DG], Dec. 2018.
  • F. Casorati, “Mesure de la Courbure des Surfaces Suivant l’idee Commune. Ses Rapports Avec les Mesures de Courbure Gaussienne et Moyenne,” Acta Math., vol. 14, no. 1, pp. 95–110, June 1890.
  • N. D. Brubaker, J. Camero, O. R. Rocha, and B. D. Suceava, “A Ladder of Curvatures in the Geometry of Surfaces,” Int. Electron. J. Geom., vol. 11, pp. 28–33, Dec. 2018.
  • L. Verstraelen, “Geometry of Submanifolds I. The First Casorati Curvature Indicatrices,” Kragujevac J. Math., vol. 37, pp. 5–23, June 2013.
  • C. W. Cobb and P. H. Douglas, “A Theory of Production,” Am. Econ. Rev., vol. 18, pp. 139–165, Mar. 1928.
  • K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow, “Capital-Labor Substitution and Economic Efficiency,” Rev. Econ. Stat., vol. 43 no. 3, pp. 225–250, Aug. 1961.
Year 2023, Volume: 1 Issue: 2, 65 - 72, 30.11.2023

Abstract

Supporting Institution

TÜBİTAK

Project Number

919B012216176

Thanks

Verdiği desktlerden ötürü TÜBİTAK'a teşekkürlerimizi saygılarımızla bildiririz.

References

  • R. W. Shephard, Theory of Cost and Production Functions. New Jersey: Princeton University Press, 1970.
  • S. K. Mishra, “A Brief History of Production Functions,” IUP J. Manage. Econom., vol., 8, no. 4, pp. 6–34, 2010.
  • G. E. Vilcu, “A Geometrical Perspective on the Generalized Cobb-Douglas Production Functions,” Appl. Math. Letters, vol. 24, pp. 777–783, May 2011, doi: 10.1016/j.aml.2010.12.038.
  • J. Barlow and I. Vodenska, “Socio-Economic Impact of the Covid-19 Pandemic in the U.S.,” Entropy, vol. 23, 673, May 2021, doi.org/10.3390/e23060673.
  • A. Pichler, M. Pangallo, R. M. del Rio-Chanona, L. Francois, and J. D. Farmer, “Production Networks and Epidemic Spreading: How to Restart the UK Economy?,” arXiv:2005.10585v1 [econ.GN], May 2020.
  • P. Mlodkowski, “Estimating Production Function Before Covid-19 Pandemic in Europe,” Eur. Integr. Stud., vol. 14, pp. 104–116, Oct. 2020.
  • E. Chassot, D. Gascuel, and A. Colomb, “Impact of Trophic Interactions on Production Functions and on the Ecosystem Response to Fishing: A Simulation Approach,” Aquat. Living Resour., vol. 18, no. 1, pp. 1–13, Jan.-Mar. 2005, doi.org/10.1051/alr:2005001.
  • I. B. Adinya, B. O. Offem, and G. U. Ikpi, “Application of a Stochastic Frontier Production Function for Measurement and Comparision of Technical Efficiency of Mandarin Fish and Clown Fish Production in Lowlands Reservoirs, Ponds and Dams of Cross River State, Nigeria,” J. Anim. and Plant Sci., vol. 21, no. 3, pp. 595–600, Feb. 2011.
  • S. T. Cooper and E. Cohn, “Estimation of a Frontier Production Function for the South Carolina Educational Process,” Econ. Educ. Rev., vol. 16, no. 3, pp. 313–327, June 1997, doi.org/10.1016/S0272-7757(96)00077-5.
  • M. E. Da Silva Freire and J. J. R. F. Da Silva, “The Application of Production Functions to the Higher Education System-Some Examples from Portuguese Universities,” High. Educ., vol. 4, no. 4, pp. 447–460, Nov. 1975.
  • T. G. Gowing, “Technical Change and Scale Economies in an Engineering Production Function: The Case of Steam Electric Power,” J. Industrial Econom., vol. 23, no. 2, 135–152, Dec. 1974.
  • J. Marsden, D. Pingry, and A. Whinston, “Engineering Foundations of Production Functions,” J. Econom. Th., vol. 9, no. 2, pp. 124–140, Oct. 1974, doi.org/10.1016/0022-0531(74)90062-3.
  • B. Y. Chen, “On Some Geometric Properties of h-Homogeneous Production Function in Microeconomics,” Kragujevac J. Math., vol. 35, no. 3, pp. 343–357, June 2011.
  • M. Zakhirov, “Econometric and Geometric Analysis of Cobb-Douglas and CES Production Functions,” ROMAI J., vol. 1, pp. 237–242, June 2005.
  • C. A. Ioan, “Applications of the Space Differential Geometry at the Study of Production Functions,” EuroEconomica, vol. 18, pp. 30–38, June 2007.
  • A. D. Vilcu and G. E. Vilcu, “On Some Geometric Properties of the Generalized CES Production Functions,” Appl. Math. Comput., vol. 218, pp. 124–129, Sep. 2011, doi 10.1016/j.amc.2011.05.061.
  • B. Y. Chen, “On Some Geometric Properties of Quasi-Sum Production Models,” J. Math. Anal. Appl., vol. 392, no. 2, pp. 192–199, Aug. 2012, doi.org/10.1016/j.jmaa.2012.03.011.
  • B. Y. Chen, “Geometry of Quasi-Sum Production Functions with Constant Elasticity of Substitution Property,” J. Adv. Math. Stud., vol. 5, no. 2, pp. 90–97, June 2012.
  • B. Y. Chen, “Classification of Homothetic Functions with Constant Elasticity of Substitution and Its Geometric Applications,” Int. Electron. J. Geom., vol. 5, no. 2, pp. 67–78, Oct. 2012.
  • B. Y. Chen, “An Explicit Formula of Hessian Determinants of Composite Functions and Its Applications,” Kragujevac J. Math., vol. 36, pp. 1–14, June 2012.
  • B. Y. Chen, “Solutions to Homogeneous Monge-Ampere Equations of Homothetic Functions and Their Applications to Production Models in Economics,” J. Math. Anal. Appl., vol. 411, pp. 223–229, Mar. 2014, doi.org/10.1016/j.jmaa.2013.09.029.
  • B. Y. Chen and G. E. Vilcu, “Geometric Classifications of Homogeneous Production Functions,” Appl. Math. Comput., vol. 225, pp. 345–351, Dec. 2013, https://doi.org/10.1016/j.amc.2013.09.052.
  • B. Y. Chen, S. Decu, and L. Verstraelen, “Notes on Isotropic Geometry of Production Models,” Kragujevac J. Math., vol. 38, pp. 23–33, June 2014.
  • B. Y. Chen, A. D. Vilcu, and G. E. Vilcu, “Classification of Graph Surfaces Induced by Weighted-Homogeneous Functions Exhibiting Vanishing Gaussian Curvature,” Mediterr. J. Math., vol. 19, no. 162, June 2022, doi.org/10.1007/s00009-022-02106-2.
  • H. Alodan, B. Y. Chen, S. Deshmukh, and G. E. Vilcu, “On Some Geometric Properties of Quasi-Product Production Models,” J. Math. Anal. Appl., vol. 474, pp. 693–711, June 2019, https://doi.org/10.1016/j.jmaa.2019.01.072.
  • H. Alodan, B. Y. Chen, S. Deshmukh, and G. E. Vilcu, “Solution of the System of Nonlinear PDEs Characterizing CES Property under Quasi-Homogeneity Conditions,” Adv. Differ. Equ., vol. 257, May 2021, doi.org/10.1186/s13662-021-03417-6.
  • M. E. Aydın and M. Ergüt, “Homothetic Functions with Allen’s Perspective and Its Geometric Applications,” Kragujevac J. Math., vol. 38, pp. 185–194, June 2014.
  • M. E. Aydın and A. Mihai, “Classification of Quasi-Sum Production Functions with Allen Determinants,” Filomat, vol. 29, pp. 1351–1359, June 2015.
  • M. E. Aydın and A. Mihai, “Translation Hypersurfaces and Tzitzeica Translation Hypersurfaces of the Euclidean Space,” Proc. Rom. Acad. Series A, vol. 16, no. 4, pp. 477–483, Oct.-Dec. 2015.
  • E. Yılmaz, M. E., Aydın, and T. Gülşen, “A Certain Class of Surfaces on Product Time Scales with Interpretations from Economics,” Filomat, vol. 32, no. 15, pp. 5297–5306, Dec. 2018.
  • X. Wang and Y. Fu, “Some Characterizations of the Cobb-Douglas and CES Production Functions in Microeconomics,” Abstr. Appl. Anal., Dec. (2013), Art. ID 761832, 6 pages, doi.org/10.1155/2013/761832.
  • Y. Fu and W. G. Wang, “Geometric Characterizations of Quasi-Product Production Models in Economics,” Filomat, vol. 31, no. 6, pp. 1601–1609, June 2017, doi.org 10.2298/FIL1706601F.
  • B. Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications. NJ Hackensack: World Scientific Ltd., 2011.
  • J. Weingarten, “Ueber eine Klasse auf Einander Abwickelbarer Flachen,” J. Reine Angew. Math., vol. 59, pp. 382–393, Dec. 1861.
  • A. P. Barreto, F. Fontenele and L. Hartmann, “Rotational Surfaces with Second Fundamental Form of Constant Length,” arXiv:1812.08676v1 [math.DG], Dec. 2018.
  • F. Casorati, “Mesure de la Courbure des Surfaces Suivant l’idee Commune. Ses Rapports Avec les Mesures de Courbure Gaussienne et Moyenne,” Acta Math., vol. 14, no. 1, pp. 95–110, June 1890.
  • N. D. Brubaker, J. Camero, O. R. Rocha, and B. D. Suceava, “A Ladder of Curvatures in the Geometry of Surfaces,” Int. Electron. J. Geom., vol. 11, pp. 28–33, Dec. 2018.
  • L. Verstraelen, “Geometry of Submanifolds I. The First Casorati Curvature Indicatrices,” Kragujevac J. Math., vol. 37, pp. 5–23, June 2013.
  • C. W. Cobb and P. H. Douglas, “A Theory of Production,” Am. Econ. Rev., vol. 18, pp. 139–165, Mar. 1928.
  • K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow, “Capital-Labor Substitution and Economic Efficiency,” Rev. Econ. Stat., vol. 43 no. 3, pp. 225–250, Aug. 1961.
There are 40 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Muhittin Evren Aydın 0000-0001-9337-8165

Muhammed Burak Gül This is me 0009-0002-9144-4258

Project Number 919B012216176
Publication Date November 30, 2023
Submission Date June 14, 2023
Published in Issue Year 2023 Volume: 1 Issue: 2

Cite

IEEE M. E. Aydın and M. B. Gül, “A Geometrical Interpretation of Production Functions in Economics in terms of Second Fundamental Form”, BJS, vol. 1, no. 2, pp. 65–72, 2023.