Derleme
BibTex RIS Kaynak Göster

Geleceğin Kent Bahçeleri: Abiyotik Strese Toleranslı Sebze Türleri ile Sürdürülebilir Tasarım

Yıl 2025, Cilt: 4 Sayı: 2, 136 - 158, 30.12.2025
https://doi.org/10.59128/bojans.1786667

Öz

Abiyotik stres faktörleri (kuraklık, tuzluluk, sıcaklık ekstremleri, ağır metal birikimi) sebzelerin büyüme, gelişme ve verimliliğini sınırlayan en önemli çevresel kısıtlardır. Bu stresler, fotosentez kapasitesinin azalması, iyon toksisitesi, membran bütünlüğünün bozulması ve oksidatif strese yol açarak bitki fizyolojisini olumsuz etkiler. Bununla birlikte, sebze türleri bu baskılar karşısında pasif kalmayıp, osmotik düzenleme, antioksidan savunma sistemlerinin aktivasyonu, iyon homeostazı, morfolojik adaptasyonlar ve hormonal sinyal ağları gibi karmaşık tolerans mekanizmaları geliştirmişlerdir. Son yıllardaki çalışmalar, bu mekanizmalarda genetik düzenlemelerin, transkriptomik adaptasyonların ve rizosfer mikrobiyotasının kritik roller oynadığını ortaya koymaktadır. Bu tolerans mekanizmalarının anlaşılması, yalnızca tarımsal verimlilik için değil, aynı zamanda sürdürülebilir kentsel peyzaj uygulamaları için de büyük önem taşımaktadır. Strese dayanıklı sebzeler, peyzaj mimarisine entegre edildiklerinde estetik çeşitlilik sunmalarının yanı sıra gıda üretimi, toprak sağlığının iyileştirilmesi, biyoçeşitliliğin desteklenmesi, yağmur suyu yönetimi, mikro iklim regülasyonu ve hatta fitoremediasyon gibi çok boyutlu ekolojik ve sosyo-ekonomik faydalar sağlarlar. Bu derleme, abiyotik stres tolerans mekanizmalarını inceleyerek, bu türlerin iklim değişikliği etkilerini hafifletici, sürdürülebilir ve üretken kentsel peyzajların tasarımında nasıl stratejik bir araç olarak kullanılabileceğini tartışmaktadır.

Kaynakça

  • Afridi, M. S., ve Upadhyay, S. (2024). Harnessing root exudates for plant microbiome: Current knowledge and future perspectives. Symbiosis, 92, 15–28. https://doi.org/10.1016/j.micres.2023.127564
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., ve Alam, P. (2020). Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches. Springer International Publishing.
  • Alam, M. A., Juraimi, A. S., Rafii, M. Y., ve Abdul Hamid, A. (2015). Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Research International, 2015, 105695. https://doi.org/10.1155/2015/105695
  • Alamar, M. C., Rouphael, Y., Colla, G., ve Terry, L. A. (2022). Root system architecture for abiotic stress tolerance in potato: Present knowledge and future perspectives. Frontiers in Plant Science, 13, 953975. https://doi.org/10.3389/fpls.2022.926214
  • Almeida, D. M., Oliveira, M. M., ve Saibo, N. J. (2021). Regulation of Na⁺ and K⁺ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 44(3), e20200319. https://doi.org/10.1590/1678-4685-GMB-2016-0106
  • Aloisio, J. M., Tuininga, A. R., ve Lewis, J. D. (2016). Crop species selection effects on stormwater runoff and edible biomass in an agricultural green roof microcosm. Urban Ecosystems, 19(4), 1865–1877. https://doi.org/10.1016/j.ecoleng.2015.12.022
  • Armson, D., Stringer, P., & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3), 245–255. https://doi.org/10.1016/j.ufug.2012.05.002
  • Ashraf, M., ve Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Baturaygil, A., Stetter, M. G., ve Schmid, K. (2021). Breeding amaranth for biomass: Evaluating dry matter content and biomass potential in early and late maturing genotypes. Agronomy, 11(5), 970. https://doi.org/10.3390/agronomy11050970
  • Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., Lovei, G. L., Mansion-Vaquie, A., Pell, J. K., Petit, S., Quesada, N., Ricci, B., Skellern, M. P., Vasco Silveira, P. M., ve Birch, A. N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145–158. https://doi.org/10.1016/j.cropro.2016.11.008
  • Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014
  • Borsai, O., Igaz, D., Csikós, N., Cseresnyés, I., Tóth, J., ve Füzy, A. (2020). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Plants, 9(12), 1764. https://doi.org/10.3390/plants9121764
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., ve Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  • Brooklyn Grange. (2023). Sustainable urban agriculture and stormwater management. https://www.brooklyngrangefarm.com/sustainability
  • Brune, M. (2016). Urban trees under climate change: Potential impacts of dry spells and heat waves in three German regions in the 2050s (Report 24).
  • Carvalho, M., Lino-Neto, T., Rosa, E., ve Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4282. https://doi.org/10.1002/jsfa.8250
  • Cechin, I., da Silva, L. P., Ferreira, E. T., Barrochelo, S. C., de Melo, F. P. S. R., Dokkedal, A. L., ve Gratao, P. L. (2022). Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions. PLOS ONE, 17(7), e0270849. https://doi.org/10.1371/journal.pone.0270849
  • Chaparro, J. M., Badri, D. V., ve Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 8(4), 790–803.
  • Chaves, M. M., Maroco, J. P., ve Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Chen, T. H. H., ve Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell ve Environment, 34(1), 1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x
  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486. https://doi.org/10.1007/s004250000458
  • Clemens, S., ve Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 67, 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301
  • Contreras, R. N., Ranney, T. G., Wilson, S. B., Lambrinos, J., Lynch, N. P., VanWallendael, A., Trueblood, B. A., Vining, K. J., Wada, S., ve Ruter, J. M. (2025). Development and evaluation of landscape plant cultivars with reduced fertility to minimize potential invasiveness. Journal of Environmental Horticulture, 43(3), 152–166. https://doi.org/10.24266/0738-2898-43.3.152
  • Çolakkadıoğlu, D. (2023). The effects of urbanization and vegetation cover on urban heat island: A case study in Osmaniye Province. International Journal of Environment and Geoinformatics, 10(1), 120–131. https://doi.org/10.30897/ijegeo.1144167
  • Çorbacı, Ö. L., Ekren, E., ve Atasoy, M. (2022). Rize kentsel açık yeşil alanlarındaki istilacı bitki türleri üzerine bir araştırma. Journal of Anatolian Environmental and Animal Sciences, 7, 156–162. https://doi.org/10.35229/jaes.1085042
  • D’Andrea, R. M., Kutschera, M., Brunetti, C., Bitonti, M. B., Tattini, M., ve Tognetti, R. (2014). Deciphering the mechanisms involved in Portulaca oleracea drought-induced C₄–CAM transition. Conicet Digital Repository. https://ri.conicet.gov.ar/handle/11336/7837
  • Danquah, A., de Zelicourt, A., Boudsocq, M., Neubauer, J., Frei Dit Frey, N., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J. P., Ortiz-Masia, D., Marcote, M. J., Hirt, H., ve Colcombet, J. (2014). Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal, 78(2), 201–215. https://doi.org/10.1111/tpj.12468
  • Datta, A., Kumschick, S., Geerts, S., ve Wilson, J. R. U. (2020). Identifying safe cultivars of invasive plants: Six questions for risk assessment, management, and communication. In J. R. Wilson et al. (Eds.), NeoBiota, 62, 81–97. https://doi.org/10.3897/neobiota.62.51635
  • Díaz-Pérez, J. C., ve Eaton, T. E. (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience, 50(11), 1709–1714. https://doi.org/10.21273/HORTSCI.50.11.1709
  • Dönmez, Ş., Çakır, M., ve Kef, Ş. (2016). Bartın’da yetişen bazı tıbbi ve aromatik bitkilerin peyzaj mimarlığında kullanımı. Journal of Architectural Sciences and Applications, 1(2), 1–8. https://doi.org/10.30785/mbud.295486
  • Egerer, M., Cecala, J. M., ve Cohen, H. (2018). Wild bee conservation within urban gardens and nurseries: Effects of local and landscape management. Sustainability, 12(1), 293. https://doi.org/10.3390/su12010293
  • Eltigani, A., Müller, A., Ngwene, B., ve George, E. (2021). Physiological and morphological responses of okra (Abelmoschus esculentus L.) to Rhizoglomus irregulare inoculation under ample water and drought stress conditions are cultivar dependent. Plants, 11(1), 89. https://doi.org/10.3390/plants11010089
  • European Commission. (2014). European guidelines on protected areas and invasive alien species. Publications Office of the European Union.
  • Evelin, H., Devi, T. S., Gupta, S., ve Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10, 470. https://doi.org/10.3389/fpls.2019.00470
  • Evert, R. F., ve Eichhorn, S. E. (2013). Raven biology of plants (8th ed.). W. H. Freeman.
  • Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., ve Turan, V. (Eds.). (2021). Engineering tolerance in crop plants against abiotic stress. CRC Press.
  • FAO, Rikolto, ve RUAF. (2022). Urban and peri-urban agriculture sourcebook – From production to food systems. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb9722en
  • Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P., ve Williams, N. S. (2013). Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecological Engineering, 49, 270–276. https://doi.org/10.1016/j.ecoleng.2012.08.036
  • Felker-Quinn, E., Schweitzer, J. A., ve Bailey, J. K. (2013). Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecology and Evolution, 3(5), 1235–1248. https://doi.org/10.1002/ece3.488
  • Flowers, T. J., ve Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3), 327–331. https://doi.org/10.1093/aob/mcu267
  • Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., ve Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants, 11(22), 3082. https://doi.org/10.3390/plants11223082
  • Giyarsih, S. R., Armansyah, Zaelany, A. A., Latifa, A., Setiawan, B., ve Saputra, D. (2024). The contribution of urban farming to urban food security: The case of “Buruan SAE”. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 17(3), 262–281. https://doi.org/10.1080/19463138.2024.2384876
  • Gohre, V., ve Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115–1122. https://doi.org/10.1007/s00425-006-0225-0
  • González Moreno, P., Anđelković, A. A., Adriaens, T., Botella, C., Demetriou, J., Bastos, R., Martinou, A. F., Pergl, J., Schindler, S., Vanderhoeven, S., Verbrugge, L. N. H., ve Pocock, M. J. O. (2025). Citizen science platforms can effectively support early detection of invasive alien species according to species traits. People and Nature, 7(1), 278–294. https://doi.org/10.1002/pan3.10767
  • Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B., ve Bardgett, R. D. (2016). Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 19(9), 1140–1149. https://doi.org/10.1111/ele.12652
  • Grevsen, K., ve Sørensen, J. N. (2021). Root vegetables: Physiology, cultivation and harvesting. CABI.
  • Griffith, M., ve Yaish, M. W. (2004). Antifreeze proteins in overwintering plants: A tale of two activities. Trends in Plant Science, 9(8), 399–405. https://doi.org/10.1016/j.tplants.2004.06.007
  • Guo, M., Li, W., ve Li, S. (2022). Tomato salt tolerance mechanisms and their potential under salinity stress: A review. Frontiers in Plant Science, 13, 949541. https://doi.org/10.3389/fpls.2022.949541
  • Hagage, M., Abdulaziz, A. M., Elbeih, S. F., ve Hewaidy, A. G. A. (2024). Monitoring soil salinization and waterlogging in the northeastern Nile Delta. Scientific Reports, 14(1), 27838. https://doi.org/10.1038/s41598-024-77954-x
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., ve Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., ve Fujita, M. (2013). Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
  • Hernández-Álvarez, C., García-Oliva, F., Cruz-Ortega, R., Romero, J., Barajas, J. M., Piñero, D., ve Alcaraz, L. D. (2022). Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. Science of the Total Environment, 805, 150136. https://doi.org/10.1016/j.scitotenv.2021.150136
  • Jiang, Z., Zhang, H, Zhao, C., ve Zhu, J. K. (2025). Mechanisms of plant acclimation to multiple abiotic stresses. Communications Biology, 8, Article 1077. https://doi.org/10.1038/s42003-025-08077-w
  • Johansen, T. J., Hagen, S. F., Bengtsson, G. B., ve Mølmann, J. A. B. (2016). Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chemistry, 196, 228–236. https://doi.org/10.1016/j.foodchem.2015.09.049
  • Kazmierczak, A., Bittner, S., Breil, M., Coninx, I., Johnson, K., Kleinenkuhnen, L., Kochova, T., Lauwaet, D., Orsted Nielsen, H., Smith, H., ve Zandersen, M. (2020). Urban adaptation in Europe: How cities and towns respond to climate change (EEA Report No. 12/2020). European Environment Agency. https://doi.org/10.2800/324620
  • Keane, R. M., ve Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology ve Evolution, 17(4), 164–170.
  • Kemeç, A. (2024). Kent bahçeciliği: Sürdürülebilir kent perspektifinden değerlendirme. Memleket Siyaset Yönetim Dergisi, 19(42), 279–298. https://doi.org/10.56524/msydergi.1453615
  • Khan, M. A., Gemenet, D. C., ve Villordon, A. (2016). Root system architecture and abiotic stress tolerance. Frontiers in Plant Science, 7, 1584. https://doi.org/10.3389/fpls.2016.01584
  • Khan, M. I. R., Reddy, P. S., Ferrante, A., ve Khan, N. A. (Eds.). (2022). Plant signaling molecules: Role and regulation under stressful environments. Woodhead Publishing.
  • Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lü, S., Joubès, J., ve Jenks, M. A. (2009). The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151(4), 1918–1929. https://doi.org/10.1104/pp.109.141911
  • Kueffer, C., ve Kull, C. A. (2017). Non-native species and the aesthetics of nature. In M. Vilà ve P. E. Hulme (Eds.), Impact of biological invasions on ecosystem services (pp. 311–324). Springer. https://doi.org/10.1007/978-3-319-45121-3_19
  • Lamaoui, M., Jemo, M., Datla, R., ve Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26. https://doi.org/10.3389/fchem.2018.00026
  • Landi, M., Tattini, M., ve Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant–environment interactions. Environmental and Experimental Botany, 119, 4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012
  • Lara, M. V., Drincovich, M. F., ve Andreo, C. S. (2004). Induction of a Crassulacean acid-like metabolism in the C4 succulent plant Portulaca oleracea L.: Study of enzymes involved in carbon fixation and carbohydrate metabolism. Plant and Cell Physiology, 45(5), 618–626. https://doi.org/10.1093/pcp/pch073
  • Li, Y., Wang, Q., Gao, S., Han, Y., ve Li, H. (2024). Vulnerability of xylem embolism in maize cultivars. Agronomy, 14(3), 438. https://doi.org/10.3390/agronomy14030438
  • Liu, F., ve Stützel, H. (2002). Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying. Journal of the American Society for Horticultural Science, 127(5), 878–883. https://doi.org/10.21273/jashs.127.5.878
  • Liu, L., Li, W., Song, W., ve Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161
  • Longstreth, D. J. (2010). Desert wisdom/Agaves and cacti: CO₂, water, climate change. Madroño, 57(1), 73. https://doi.org/10.3120/0024-9637-57.1.73
  • Marchiol, L., Assolari, S., Sacco, P., ve Zerbi, G. (2004). Phytoextraction of heavy metals by canola and radish. Environmental Pollution, 132(1), 21–27. https://doi.org/10.1016/j.envpol.2004.04.001
  • McClintock, N., ve Simpson, M. (2018). Stacking functions: Identifying motivational frames guiding urban agriculture organizations and businesses in the United States and Canada. Agriculture and Human Values, 35, 19–39. https://doi.org/10.1007/s10460-017-9780-5
  • McGuire, K. L., Payne, S. G., Palmer, M. I., Gillikin, C. M., Keefe, D., Kim, S. J., Koshner, J. A., ve Fierer, N. (2013). Digging the New York City skyline: Soil fungal communities in green roofs and city parks. PLOS ONE, 8(3), e58020. https://doi.org/10.1371/journal.pone.0058020
  • Mishra, A. (2021). Phytoremediation of heavy metal-contaminated soils: Recent advances, challenges, and future prospects. In M. N. V. Prasad ve P. K. Pathak (Eds.), Bioremediation for environmental sustainability (pp. 29–51). Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00002-4
  • Mishra, U. N., Saha, D., Chauhan, J., Kumar, V., Jatav, H. S., Lal, D., Asha, K., Singhal, R. K., ve Chandra, K. (2022). Emerging roles of osmoprotectants in response to multiple abiotic stress tolerance in plants. In Omics analysis of plants under abiotic stress (pp. 179–206). Apple Academic Press. https://doi.org/10.1201/9781003282761-7
  • Mkhabela, S. S., Shimelis, H., Gerrano, A. S., ve Mashilo, J. (2023). Drought tolerance assessment of okra (Abelmoschus esculentus [L.] Moench) accessions based on leaf gas exchange and chlorophyll fluorescence. Life, 13(3), 682. https://doi.org/10.3390/life13030682
  • Mok, H.‐F., Williamson, V. G., Grove, J. R., Burry, K., Barker, S. F., & Hamilton, A. J. (2014). Strawberry fields forever? Urban agriculture in developed countries: A review. Agronomy for Sustainable Development, 34(1), 21–43. https://doi.org/10.1007/s13593-013-0156-7
  • Mondal, S., Nagella, P., Mahawar, L., Raj, S., Jha, A., Parameswaran, C., ve Nagaraju, M. (2024). Understanding abiotic stress tolerance mechanisms in non-model plants promotes efficient utilization of germplasm for the development of stress-tolerant crops. Current Opinion in Plant Biology, 80, 102455. https://doi.org/10.1016/j.pbi.2024.102455
  • Muchero, W., Ehlers, J. D., ve Roberts, P. A. (2008). Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Science, 48(4), 1250–1265. https://doi.org/10.2135/cropsci2007.07.0397
  • Munns, R., ve Gilliham, M. (2015). Salinity tolerance of crops – What is the cost? New Phytologist, 208(3), 668–673. https://doi.org/10.1111/nph.13519
  • Munns, R., ve Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., Gaffin, S., Köhler, M., Liu, K. K. Y., ve Rowe, B. (2007). Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience, 57(10), 823–833. https://doi.org/10.1641/B571005
  • Oke, T. R., Mills, G., Christen, A., ve Voogt, J. A. (2017). Urban climates (2nd ed.). Cambridge University Press.
  • Orsini, F., Kahane, R., Nono-Womdim, R., ve Gianquinto, G. (2013). Urban agriculture in the developing world: A review. Agronomy for Sustainable Development, 33, 695–720. https://doi.org/10.1007/s13593-013-0143-z
  • Ossola, A., Locke, D., Lin, B., ve Minor, E. (2019). Greening in style: Urban form, architecture and the structure of front and backyard vegetation. Landscape and Urban Planning, 185, 141–157. https://doi.org/10.1016/j.landurbplan.2019.02.014
  • Oyoshi, K., Katano, K., Yunose, M., ve Suzuki, N. (2020). Memory of 5-min heat stress in Arabidopsis thaliana. Plant Signaling ve Behavior, 15(8), 1778919. https://doi.org/10.1080/15592324.2020.1778919
  • Palla, A., ve Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology, 528, 361–368. https://doi.org/10.1016/j.jhydrol.2015.06.050
  • Peleg, Z., ve Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
  • Plant Chicago. (2023). Circular economy and urban food systems: Annual report 2023. https://www.plantchicago.org/post/our-2023-annual-report-is-here
  • Polturak, G., ve Aharoni, A. (2018). “La vie en rose”: Biosynthesis, sources, and applications of betalain pigments. Molecular Plant, 11(1), 7–22. https://doi.org/10.1016/j.molp.2017.10.008
  • Pouyat, R. V., Yesilonis, I. D., ve Nowak, D. J. (2006). Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35(4), 1566–1575. https://doi.org/10.2134/jeq2005.0215
  • Pratx, L., Wendering, P., Kappel, C., Nikoloski, Z., ve Bäurle, I. (2023). Histone retention preserves epigenetic marks during heat stress memory. EMBO Journal. https://doi.org/10.15252/embj.2023113595
  • Prevéy, J. S., Parker, L. E., Harrington, C. A., Lamb, C. T., ve Proctor, M. F. (2020). Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology, 280, 107803. https://doi.org/10.1016/j.agrformet.2019.107803
  • Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., ve Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Reviews, 95(6), 1511–1534. https://doi.org/10.1111/brv.12627
  • Qiao, M., Hong, C., Jiao, Y., Hou, S., ve Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13(13), 1808. https://doi.org/10.3390/plants13131808
  • Reddy, K. R., Hodges, H. F., ve Read, J. J. (2012). Temperature effects on vegetable crops. In K. R. Reddy ve H. F. Hodges (Eds.), Climate change and global crop productivity (pp. 213–255). CABI.
  • Reid, W. V., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A. K., Hassan, R., Kasperson, R., Leemans, R., May, R. M., McMichael, A. J., Pingali, P., Samper, C., Scholes, R., Watson, R. T., Zakri, A. H., Shidong, Z., Ash, N. J., Bennett, E., Kumar, P., Lee, M. J., Raudsepp Hearne, C., Simons, H., Thonell, J., ve Zurek, M. B. (2005). Ecosystems and human well being – Synthesis: A report of the Millennium Ecosystem Assessment. Island Press.
  • Relf, D. (2016). The value of landscaping (Publication No. 426 721/SPES 404). Virginia Cooperative Extension, Virginia Tech. https://vtechworks.lib.vt.edu/bitstreams/2c20adeb-4eff-4730-aa94-05b3f96774d7/download
  • Rezayian, M., Ebrahimzadeh, H., ve Niknam, V. (2020). Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. Journal of Soil Science and Plant Nutrition, 20, 1122–1132. https://doi.org/10.1007/s42729-020-00198-x
  • Ribeiro, A. J., da Silva Alves, A., Betancur Gonzalez, J. A., Galina, J., Machado, J. S., Machado, M. L., ve Zeist, A. R. (2025). Selection of sweet potato (Ipomoea batatas Lam.) genotypes with ornamental and dual-purpose potential. South African Journal of Botany, 186, 224–237. https://doi.org/10.1016/j.sajb.2025.09.018
  • Roșca, M., Mihalache, G., ve Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 14, 1118383. https://doi.org/10.3389/fpls.2023.1118383
  • Rossini, F., Provenzano, M. E., Kuzmanović, L., ve Ruggeri, R. (2019). Jerusalem artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy, 9(9), 528. https://doi.org/10.3390/agronomy9090528
  • Ruiz, K. B., Biondi, S., Oses, R., Acuña Rodríguez, I. S., Antognoni, F., Martinez Mosqueira, E. A., Coulibaly, A., Canahua Murillo, A., Pinto, M., Zurita Silva, A., Bazile, D., Jacobsen, S.-E., ve Molina Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change: A review. Agronomy for Sustainable Development, 34(2), 349–359. https://doi.org/10.1007/s13593-013-0195-0
  • Saleh, M., Salehi, M., Khanaki, S., Ebrahimian, H., Liaghat, A., Mousavi, S. M., Pashapour, S., ve Ashrafi, A. (2025). Effects of treated wastewater irrigation on soil properties, nutrient uptakes, and crop yields of agronomic crops under different crop rotations. Agricultural Water Management, 289, 109585. https://doi.org/10.1016/j.agwat.2025.109585
  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., ve Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(5), 468–474. https://doi.org/10.1038/nbt0595-468
  • Sánchez-Bermúdez, M., del Pozo, J. C., ve Pernas, M. (2022). Effects of combined abiotic stresses related to climate change on root growth in crops. Frontiers in Plant Science, 13, 918537. https://doi.org/10.3389/fpls.2022.918537
  • Sardans, J., Lambers, H., Preece, C., Alrefaei, A. F., ve Peñuelas, J. (2023). Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? The Plant Journal, 115(6), 1237–1255. https://doi.org/10.1111/tpj.16184
  • Säumel, I., Weber, F., ve Kowarik, I. (2016). Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environmental Science ve Policy, 62, 24–33. https://doi.org/10.1016/j.envsci.2015.11.012
  • Smanov, Z., Duisenbayev, S., Zulpykharov, K., Laiskhanov, S., Turymtayev, Z., Kozhayev, Z., Atasoy, E., ve Taukebayev, O. (2025). Soil salinization and its impact on the degradation of agricultural landscapes of the Talas district, Kazakhstan. Journal of the Geographical Institute “Jovan Cvijić” SASA, 75(2), 233–250. https://doi.org/10.2298/IJGI2502233S
  • Snyder, R. L., ve de Melo-Abreu, J. P. (2005). Frost protection: Fundamentals, practice and economics. FAO.
  • Soma, F., Mogami, J., Yoshida, T., ve Nakashima, K. (2020). ABA-unresponsive SnRK2 kinases. Nature Plants, 6(4), 408–420.
  • Stommel, J. R., ve Bosland, P. W. (2006). Ornamental pepper. In N. O. Anderson (Ed.), Flower breeding and genetics (pp. 561–599). Springer. Tan, J. K. N., Lee, L. Y., Tan, P. Y., ve Jim, C. Y. (2021). Urban heat island mitigation by vegetation. Urban Forestry ve Urban Greening, 64, 127260.
  • Theodorou, P., Radzevičiūtė, R., Lentendu, G., Kahnt, B., Husemann, M., Bleidorn, C., Settele, J., Schweiger, O., Grosse, I., Wubet, T., Murray, T. E., ve Paxton, R. J. (2020). Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 11(1), 576. https://doi.org/10.1038/s41467-020-14496-6
  • Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A., ve Raizada, M. N. (2016). Belowground nitrogen transfer. Agronomy for Sustainable Development, 36, 58.
  • Tojić, T., Đorđević, T., Đurović Pejčev, R., Aćimović, M., Božić, D., Radivojević, L., Sarić Krsmanović, M., ve Vrbničanin, S. (2025). Allelopathic potential of Artemisia absinthium and Artemisia vulgaris from Serbia: Chemical composition and bioactivity on weeds. Plants, 14(11), 1663. https://doi.org/10.3390/plants14111663
  • Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30, 967–977. https://doi.org/10.1007/s10529-008-9639-z
  • Üstündağ, Ç., Karataş, Ş. İ., Parıldar, N. N., ve Artar, M. (2023). Kentsel ısı adalarının azaltılmasında yeşil altyapı sistemlerinin önemi. Peyzaj ve Ekoloji Dergisi, 5(2), 124–134. https://doi.org/10.53784/peyzaj.1406139
  • VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., ve Xiao, L. (2005). Green roof stormwater retention: Effects of roof surface, slope, and media depth. Journal of Environmental Quality, 34(3), 1036–1044. https://doi.org/10.2134/jeq2004.0364
  • Ventura, Y., ve Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153. https://doi.org/10.1016/j.envexpbot.2012.07.010
  • Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., ve Bovy, A. G. (2013). Secondary metabolites of Capsicum species and their importance in the human diet. Journal of Natural Products, 76(4), 783–793. https://doi.org/10.1021/np300898z
  • Wang, W., Vinocur, B., Shoseyov, O., ve Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252. https://doi.org/10.1016/j.tplants.2004.03.006
  • Werkenthin, M., Kluge, B., ve Wessolek, G. (2014). Metals in European roadside soils and soil solution – A review. Environmental Pollution, 189, 98–110. https://doi.org/10.1016/j.envpol.2014.02.025
  • Whittinghill, L. J., ve Rowe, D. B. (2012). The role of green roof technology in urban agriculture. Renewable Agriculture and Food Systems, 27(4), 314–322. https://doi.org/10.1017/S174217051100038X
  • Wu, Y., Li, X., Yu, L., Wang, T., Wang, J., ve Liu, T. (2022). Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resources, Conservation and Recycling, 181, 106261. https://doi.org/10.1016/j.resconrec.2022.106261
  • Xiong, Z. (1998). Heavy metal contamination of urban soils and plants in relation to traffic in Wuhan City, China. Toxicological and Environmental Chemistry, 65(1), 31–39. https://doi.org/10.1080/02772249809358555
  • Xu, Q., Wang, J., ve Shi, W. (2023). Source apportionment and potential ecological risk assessment of heavy metals in soils on a large scale in China. Environmental Geochemistry and Health, 45(5), 1413–1427. https://doi.org/10.1007/s10653-022-01266-0
  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., ve Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
  • Yoshida, T., Mogami, J., ve Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21, 133–139. https://doi.org/10.1016/j.pbi.2014.07.009
  • Zarzyńska, K., Boguszewska-Mańkowska, D., ve Nosalewicz, A. (2017). Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant, Soil and Environment, 63(3), 159–164. https://doi.org/10.17221/4/2017-PSE
  • Zheng, S., Zhao, W., Liu, Z., Geng, Z., Li, Q., Liu, B., Li, B., ve Bai, J. (2024). Establishment and maintenance of heat-stress memory in plants. International Journal of Molecular Sciences, 25(16), 8976. https://doi.org/10.3390/ijms25168976
  • Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., ve Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLOS ONE, 13(3), e0191139. https://doi.org/10.1371/journal.pone.0191139
  • Zhou, R., Yu, X., Ottosen, C.-O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T., ve Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17, Article 24. https://doi.org/10.1186/s12870-017-0974-2

Future Urban Gardens: Sustainable Design with Abiotic Stress-Tolerant Vegetable Species

Yıl 2025, Cilt: 4 Sayı: 2, 136 - 158, 30.12.2025
https://doi.org/10.59128/bojans.1786667

Öz

Abiotic stress factors (drought, salinity, temperature extremes, heavy metal accumulation) are the most significant environmental constraints limiting the growth, development, and productivity of vegetables. These stresses adversely affect plant physiology by reducing photosynthetic capacity, causing ion toxicity, disrupting membrane integrity, and leading to oxidative stress. However, vegetable species are not passive against these pressures; they have developed complex tolerance mechanisms such as osmotic adjustment, activation of antioxidant defense systems, ion homeostasis, morphological adaptations, and hormonal signaling networks. Recent studies reveal that genetic regulations, transcriptomic adaptations, and rhizosphere microbiota play critical roles in these mechanisms. Understanding these tolerance mechanisms is of great importance not only for agricultural productivity but also for sustainable urban landscape practices. When stress-resistant vegetables are integrated into landscape architecture, they provide multidimensional ecological and socio-economic benefits, such as aesthetic diversity, food production, improved soil health, supported biodiversity, stormwater management, microclimate regulation, and even phytoremediation, alongside their aesthetic value. This review examines abiotic stress tolerance mechanisms and discusses how such species can be used as strategic tools in designing sustainable and productive urban landscapes that mitigate the effects of climate change.

Kaynakça

  • Afridi, M. S., ve Upadhyay, S. (2024). Harnessing root exudates for plant microbiome: Current knowledge and future perspectives. Symbiosis, 92, 15–28. https://doi.org/10.1016/j.micres.2023.127564
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., ve Alam, P. (2020). Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches. Springer International Publishing.
  • Alam, M. A., Juraimi, A. S., Rafii, M. Y., ve Abdul Hamid, A. (2015). Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Research International, 2015, 105695. https://doi.org/10.1155/2015/105695
  • Alamar, M. C., Rouphael, Y., Colla, G., ve Terry, L. A. (2022). Root system architecture for abiotic stress tolerance in potato: Present knowledge and future perspectives. Frontiers in Plant Science, 13, 953975. https://doi.org/10.3389/fpls.2022.926214
  • Almeida, D. M., Oliveira, M. M., ve Saibo, N. J. (2021). Regulation of Na⁺ and K⁺ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 44(3), e20200319. https://doi.org/10.1590/1678-4685-GMB-2016-0106
  • Aloisio, J. M., Tuininga, A. R., ve Lewis, J. D. (2016). Crop species selection effects on stormwater runoff and edible biomass in an agricultural green roof microcosm. Urban Ecosystems, 19(4), 1865–1877. https://doi.org/10.1016/j.ecoleng.2015.12.022
  • Armson, D., Stringer, P., & Ennos, A. R. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3), 245–255. https://doi.org/10.1016/j.ufug.2012.05.002
  • Ashraf, M., ve Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Baturaygil, A., Stetter, M. G., ve Schmid, K. (2021). Breeding amaranth for biomass: Evaluating dry matter content and biomass potential in early and late maturing genotypes. Agronomy, 11(5), 970. https://doi.org/10.3390/agronomy11050970
  • Begg, G. S., Cook, S. M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., Lovei, G. L., Mansion-Vaquie, A., Pell, J. K., Petit, S., Quesada, N., Ricci, B., Skellern, M. P., Vasco Silveira, P. M., ve Birch, A. N. E. (2017). A functional overview of conservation biological control. Crop Protection, 97, 145–158. https://doi.org/10.1016/j.cropro.2016.11.008
  • Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014
  • Borsai, O., Igaz, D., Csikós, N., Cseresnyés, I., Tóth, J., ve Füzy, A. (2020). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Plants, 9(12), 1764. https://doi.org/10.3390/plants9121764
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., ve Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review. Landscape and Urban Planning, 97(3), 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006
  • Brooklyn Grange. (2023). Sustainable urban agriculture and stormwater management. https://www.brooklyngrangefarm.com/sustainability
  • Brune, M. (2016). Urban trees under climate change: Potential impacts of dry spells and heat waves in three German regions in the 2050s (Report 24).
  • Carvalho, M., Lino-Neto, T., Rosa, E., ve Carnide, V. (2017). Cowpea: A legume crop for a challenging environment. Journal of the Science of Food and Agriculture, 97(13), 4273–4282. https://doi.org/10.1002/jsfa.8250
  • Cechin, I., da Silva, L. P., Ferreira, E. T., Barrochelo, S. C., de Melo, F. P. S. R., Dokkedal, A. L., ve Gratao, P. L. (2022). Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions. PLOS ONE, 17(7), e0270849. https://doi.org/10.1371/journal.pone.0270849
  • Chaparro, J. M., Badri, D. V., ve Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 8(4), 790–803.
  • Chaves, M. M., Maroco, J. P., ve Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Chen, T. H. H., ve Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell ve Environment, 34(1), 1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x
  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486. https://doi.org/10.1007/s004250000458
  • Clemens, S., ve Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 67, 489–512. https://doi.org/10.1146/annurev-arplant-043015-112301
  • Contreras, R. N., Ranney, T. G., Wilson, S. B., Lambrinos, J., Lynch, N. P., VanWallendael, A., Trueblood, B. A., Vining, K. J., Wada, S., ve Ruter, J. M. (2025). Development and evaluation of landscape plant cultivars with reduced fertility to minimize potential invasiveness. Journal of Environmental Horticulture, 43(3), 152–166. https://doi.org/10.24266/0738-2898-43.3.152
  • Çolakkadıoğlu, D. (2023). The effects of urbanization and vegetation cover on urban heat island: A case study in Osmaniye Province. International Journal of Environment and Geoinformatics, 10(1), 120–131. https://doi.org/10.30897/ijegeo.1144167
  • Çorbacı, Ö. L., Ekren, E., ve Atasoy, M. (2022). Rize kentsel açık yeşil alanlarındaki istilacı bitki türleri üzerine bir araştırma. Journal of Anatolian Environmental and Animal Sciences, 7, 156–162. https://doi.org/10.35229/jaes.1085042
  • D’Andrea, R. M., Kutschera, M., Brunetti, C., Bitonti, M. B., Tattini, M., ve Tognetti, R. (2014). Deciphering the mechanisms involved in Portulaca oleracea drought-induced C₄–CAM transition. Conicet Digital Repository. https://ri.conicet.gov.ar/handle/11336/7837
  • Danquah, A., de Zelicourt, A., Boudsocq, M., Neubauer, J., Frei Dit Frey, N., Leonhardt, N., Pateyron, S., Gwinner, F., Tamby, J. P., Ortiz-Masia, D., Marcote, M. J., Hirt, H., ve Colcombet, J. (2014). Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal, 78(2), 201–215. https://doi.org/10.1111/tpj.12468
  • Datta, A., Kumschick, S., Geerts, S., ve Wilson, J. R. U. (2020). Identifying safe cultivars of invasive plants: Six questions for risk assessment, management, and communication. In J. R. Wilson et al. (Eds.), NeoBiota, 62, 81–97. https://doi.org/10.3897/neobiota.62.51635
  • Díaz-Pérez, J. C., ve Eaton, T. E. (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience, 50(11), 1709–1714. https://doi.org/10.21273/HORTSCI.50.11.1709
  • Dönmez, Ş., Çakır, M., ve Kef, Ş. (2016). Bartın’da yetişen bazı tıbbi ve aromatik bitkilerin peyzaj mimarlığında kullanımı. Journal of Architectural Sciences and Applications, 1(2), 1–8. https://doi.org/10.30785/mbud.295486
  • Egerer, M., Cecala, J. M., ve Cohen, H. (2018). Wild bee conservation within urban gardens and nurseries: Effects of local and landscape management. Sustainability, 12(1), 293. https://doi.org/10.3390/su12010293
  • Eltigani, A., Müller, A., Ngwene, B., ve George, E. (2021). Physiological and morphological responses of okra (Abelmoschus esculentus L.) to Rhizoglomus irregulare inoculation under ample water and drought stress conditions are cultivar dependent. Plants, 11(1), 89. https://doi.org/10.3390/plants11010089
  • European Commission. (2014). European guidelines on protected areas and invasive alien species. Publications Office of the European Union.
  • Evelin, H., Devi, T. S., Gupta, S., ve Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10, 470. https://doi.org/10.3389/fpls.2019.00470
  • Evert, R. F., ve Eichhorn, S. E. (2013). Raven biology of plants (8th ed.). W. H. Freeman.
  • Fahad, S., Sonmez, O., Saud, S., Wang, D., Wu, C., Adnan, M., ve Turan, V. (Eds.). (2021). Engineering tolerance in crop plants against abiotic stress. CRC Press.
  • FAO, Rikolto, ve RUAF. (2022). Urban and peri-urban agriculture sourcebook – From production to food systems. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb9722en
  • Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P., ve Williams, N. S. (2013). Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecological Engineering, 49, 270–276. https://doi.org/10.1016/j.ecoleng.2012.08.036
  • Felker-Quinn, E., Schweitzer, J. A., ve Bailey, J. K. (2013). Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecology and Evolution, 3(5), 1235–1248. https://doi.org/10.1002/ece3.488
  • Flowers, T. J., ve Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3), 327–331. https://doi.org/10.1093/aob/mcu267
  • Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V., ve Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants, 11(22), 3082. https://doi.org/10.3390/plants11223082
  • Giyarsih, S. R., Armansyah, Zaelany, A. A., Latifa, A., Setiawan, B., ve Saputra, D. (2024). The contribution of urban farming to urban food security: The case of “Buruan SAE”. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 17(3), 262–281. https://doi.org/10.1080/19463138.2024.2384876
  • Gohre, V., ve Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115–1122. https://doi.org/10.1007/s00425-006-0225-0
  • González Moreno, P., Anđelković, A. A., Adriaens, T., Botella, C., Demetriou, J., Bastos, R., Martinou, A. F., Pergl, J., Schindler, S., Vanderhoeven, S., Verbrugge, L. N. H., ve Pocock, M. J. O. (2025). Citizen science platforms can effectively support early detection of invasive alien species according to species traits. People and Nature, 7(1), 278–294. https://doi.org/10.1002/pan3.10767
  • Gould, I. J., Quinton, J. N., Weigelt, A., De Deyn, G. B., ve Bardgett, R. D. (2016). Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 19(9), 1140–1149. https://doi.org/10.1111/ele.12652
  • Grevsen, K., ve Sørensen, J. N. (2021). Root vegetables: Physiology, cultivation and harvesting. CABI.
  • Griffith, M., ve Yaish, M. W. (2004). Antifreeze proteins in overwintering plants: A tale of two activities. Trends in Plant Science, 9(8), 399–405. https://doi.org/10.1016/j.tplants.2004.06.007
  • Guo, M., Li, W., ve Li, S. (2022). Tomato salt tolerance mechanisms and their potential under salinity stress: A review. Frontiers in Plant Science, 13, 949541. https://doi.org/10.3389/fpls.2022.949541
  • Hagage, M., Abdulaziz, A. M., Elbeih, S. F., ve Hewaidy, A. G. A. (2024). Monitoring soil salinization and waterlogging in the northeastern Nile Delta. Scientific Reports, 14(1), 27838. https://doi.org/10.1038/s41598-024-77954-x
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., ve Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., ve Fujita, M. (2013). Physiological, biochemical and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
  • Hernández-Álvarez, C., García-Oliva, F., Cruz-Ortega, R., Romero, J., Barajas, J. M., Piñero, D., ve Alcaraz, L. D. (2022). Squash root microbiome transplants and metagenomic inspection for in situ arid adaptations. Science of the Total Environment, 805, 150136. https://doi.org/10.1016/j.scitotenv.2021.150136
  • Jiang, Z., Zhang, H, Zhao, C., ve Zhu, J. K. (2025). Mechanisms of plant acclimation to multiple abiotic stresses. Communications Biology, 8, Article 1077. https://doi.org/10.1038/s42003-025-08077-w
  • Johansen, T. J., Hagen, S. F., Bengtsson, G. B., ve Mølmann, J. A. B. (2016). Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chemistry, 196, 228–236. https://doi.org/10.1016/j.foodchem.2015.09.049
  • Kazmierczak, A., Bittner, S., Breil, M., Coninx, I., Johnson, K., Kleinenkuhnen, L., Kochova, T., Lauwaet, D., Orsted Nielsen, H., Smith, H., ve Zandersen, M. (2020). Urban adaptation in Europe: How cities and towns respond to climate change (EEA Report No. 12/2020). European Environment Agency. https://doi.org/10.2800/324620
  • Keane, R. M., ve Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology ve Evolution, 17(4), 164–170.
  • Kemeç, A. (2024). Kent bahçeciliği: Sürdürülebilir kent perspektifinden değerlendirme. Memleket Siyaset Yönetim Dergisi, 19(42), 279–298. https://doi.org/10.56524/msydergi.1453615
  • Khan, M. A., Gemenet, D. C., ve Villordon, A. (2016). Root system architecture and abiotic stress tolerance. Frontiers in Plant Science, 7, 1584. https://doi.org/10.3389/fpls.2016.01584
  • Khan, M. I. R., Reddy, P. S., Ferrante, A., ve Khan, N. A. (Eds.). (2022). Plant signaling molecules: Role and regulation under stressful environments. Woodhead Publishing.
  • Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lü, S., Joubès, J., ve Jenks, M. A. (2009). The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151(4), 1918–1929. https://doi.org/10.1104/pp.109.141911
  • Kueffer, C., ve Kull, C. A. (2017). Non-native species and the aesthetics of nature. In M. Vilà ve P. E. Hulme (Eds.), Impact of biological invasions on ecosystem services (pp. 311–324). Springer. https://doi.org/10.1007/978-3-319-45121-3_19
  • Lamaoui, M., Jemo, M., Datla, R., ve Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26. https://doi.org/10.3389/fchem.2018.00026
  • Landi, M., Tattini, M., ve Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant–environment interactions. Environmental and Experimental Botany, 119, 4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012
  • Lara, M. V., Drincovich, M. F., ve Andreo, C. S. (2004). Induction of a Crassulacean acid-like metabolism in the C4 succulent plant Portulaca oleracea L.: Study of enzymes involved in carbon fixation and carbohydrate metabolism. Plant and Cell Physiology, 45(5), 618–626. https://doi.org/10.1093/pcp/pch073
  • Li, Y., Wang, Q., Gao, S., Han, Y., ve Li, H. (2024). Vulnerability of xylem embolism in maize cultivars. Agronomy, 14(3), 438. https://doi.org/10.3390/agronomy14030438
  • Liu, F., ve Stützel, H. (2002). Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying. Journal of the American Society for Horticultural Science, 127(5), 878–883. https://doi.org/10.21273/jashs.127.5.878
  • Liu, L., Li, W., Song, W., ve Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161
  • Longstreth, D. J. (2010). Desert wisdom/Agaves and cacti: CO₂, water, climate change. Madroño, 57(1), 73. https://doi.org/10.3120/0024-9637-57.1.73
  • Marchiol, L., Assolari, S., Sacco, P., ve Zerbi, G. (2004). Phytoextraction of heavy metals by canola and radish. Environmental Pollution, 132(1), 21–27. https://doi.org/10.1016/j.envpol.2004.04.001
  • McClintock, N., ve Simpson, M. (2018). Stacking functions: Identifying motivational frames guiding urban agriculture organizations and businesses in the United States and Canada. Agriculture and Human Values, 35, 19–39. https://doi.org/10.1007/s10460-017-9780-5
  • McGuire, K. L., Payne, S. G., Palmer, M. I., Gillikin, C. M., Keefe, D., Kim, S. J., Koshner, J. A., ve Fierer, N. (2013). Digging the New York City skyline: Soil fungal communities in green roofs and city parks. PLOS ONE, 8(3), e58020. https://doi.org/10.1371/journal.pone.0058020
  • Mishra, A. (2021). Phytoremediation of heavy metal-contaminated soils: Recent advances, challenges, and future prospects. In M. N. V. Prasad ve P. K. Pathak (Eds.), Bioremediation for environmental sustainability (pp. 29–51). Elsevier. https://doi.org/10.1016/B978-0-12-820524-2.00002-4
  • Mishra, U. N., Saha, D., Chauhan, J., Kumar, V., Jatav, H. S., Lal, D., Asha, K., Singhal, R. K., ve Chandra, K. (2022). Emerging roles of osmoprotectants in response to multiple abiotic stress tolerance in plants. In Omics analysis of plants under abiotic stress (pp. 179–206). Apple Academic Press. https://doi.org/10.1201/9781003282761-7
  • Mkhabela, S. S., Shimelis, H., Gerrano, A. S., ve Mashilo, J. (2023). Drought tolerance assessment of okra (Abelmoschus esculentus [L.] Moench) accessions based on leaf gas exchange and chlorophyll fluorescence. Life, 13(3), 682. https://doi.org/10.3390/life13030682
  • Mok, H.‐F., Williamson, V. G., Grove, J. R., Burry, K., Barker, S. F., & Hamilton, A. J. (2014). Strawberry fields forever? Urban agriculture in developed countries: A review. Agronomy for Sustainable Development, 34(1), 21–43. https://doi.org/10.1007/s13593-013-0156-7
  • Mondal, S., Nagella, P., Mahawar, L., Raj, S., Jha, A., Parameswaran, C., ve Nagaraju, M. (2024). Understanding abiotic stress tolerance mechanisms in non-model plants promotes efficient utilization of germplasm for the development of stress-tolerant crops. Current Opinion in Plant Biology, 80, 102455. https://doi.org/10.1016/j.pbi.2024.102455
  • Muchero, W., Ehlers, J. D., ve Roberts, P. A. (2008). Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Science, 48(4), 1250–1265. https://doi.org/10.2135/cropsci2007.07.0397
  • Munns, R., ve Gilliham, M. (2015). Salinity tolerance of crops – What is the cost? New Phytologist, 208(3), 668–673. https://doi.org/10.1111/nph.13519
  • Munns, R., ve Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., Gaffin, S., Köhler, M., Liu, K. K. Y., ve Rowe, B. (2007). Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience, 57(10), 823–833. https://doi.org/10.1641/B571005
  • Oke, T. R., Mills, G., Christen, A., ve Voogt, J. A. (2017). Urban climates (2nd ed.). Cambridge University Press.
  • Orsini, F., Kahane, R., Nono-Womdim, R., ve Gianquinto, G. (2013). Urban agriculture in the developing world: A review. Agronomy for Sustainable Development, 33, 695–720. https://doi.org/10.1007/s13593-013-0143-z
  • Ossola, A., Locke, D., Lin, B., ve Minor, E. (2019). Greening in style: Urban form, architecture and the structure of front and backyard vegetation. Landscape and Urban Planning, 185, 141–157. https://doi.org/10.1016/j.landurbplan.2019.02.014
  • Oyoshi, K., Katano, K., Yunose, M., ve Suzuki, N. (2020). Memory of 5-min heat stress in Arabidopsis thaliana. Plant Signaling ve Behavior, 15(8), 1778919. https://doi.org/10.1080/15592324.2020.1778919
  • Palla, A., ve Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology, 528, 361–368. https://doi.org/10.1016/j.jhydrol.2015.06.050
  • Peleg, Z., ve Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295. https://doi.org/10.1016/j.pbi.2011.02.001
  • Plant Chicago. (2023). Circular economy and urban food systems: Annual report 2023. https://www.plantchicago.org/post/our-2023-annual-report-is-here
  • Polturak, G., ve Aharoni, A. (2018). “La vie en rose”: Biosynthesis, sources, and applications of betalain pigments. Molecular Plant, 11(1), 7–22. https://doi.org/10.1016/j.molp.2017.10.008
  • Pouyat, R. V., Yesilonis, I. D., ve Nowak, D. J. (2006). Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35(4), 1566–1575. https://doi.org/10.2134/jeq2005.0215
  • Pratx, L., Wendering, P., Kappel, C., Nikoloski, Z., ve Bäurle, I. (2023). Histone retention preserves epigenetic marks during heat stress memory. EMBO Journal. https://doi.org/10.15252/embj.2023113595
  • Prevéy, J. S., Parker, L. E., Harrington, C. A., Lamb, C. T., ve Proctor, M. F. (2020). Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology, 280, 107803. https://doi.org/10.1016/j.agrformet.2019.107803
  • Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., ve Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Reviews, 95(6), 1511–1534. https://doi.org/10.1111/brv.12627
  • Qiao, M., Hong, C., Jiao, Y., Hou, S., ve Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants, 13(13), 1808. https://doi.org/10.3390/plants13131808
  • Reddy, K. R., Hodges, H. F., ve Read, J. J. (2012). Temperature effects on vegetable crops. In K. R. Reddy ve H. F. Hodges (Eds.), Climate change and global crop productivity (pp. 213–255). CABI.
  • Reid, W. V., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A. K., Hassan, R., Kasperson, R., Leemans, R., May, R. M., McMichael, A. J., Pingali, P., Samper, C., Scholes, R., Watson, R. T., Zakri, A. H., Shidong, Z., Ash, N. J., Bennett, E., Kumar, P., Lee, M. J., Raudsepp Hearne, C., Simons, H., Thonell, J., ve Zurek, M. B. (2005). Ecosystems and human well being – Synthesis: A report of the Millennium Ecosystem Assessment. Island Press.
  • Relf, D. (2016). The value of landscaping (Publication No. 426 721/SPES 404). Virginia Cooperative Extension, Virginia Tech. https://vtechworks.lib.vt.edu/bitstreams/2c20adeb-4eff-4730-aa94-05b3f96774d7/download
  • Rezayian, M., Ebrahimzadeh, H., ve Niknam, V. (2020). Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. Journal of Soil Science and Plant Nutrition, 20, 1122–1132. https://doi.org/10.1007/s42729-020-00198-x
  • Ribeiro, A. J., da Silva Alves, A., Betancur Gonzalez, J. A., Galina, J., Machado, J. S., Machado, M. L., ve Zeist, A. R. (2025). Selection of sweet potato (Ipomoea batatas Lam.) genotypes with ornamental and dual-purpose potential. South African Journal of Botany, 186, 224–237. https://doi.org/10.1016/j.sajb.2025.09.018
  • Roșca, M., Mihalache, G., ve Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 14, 1118383. https://doi.org/10.3389/fpls.2023.1118383
  • Rossini, F., Provenzano, M. E., Kuzmanović, L., ve Ruggeri, R. (2019). Jerusalem artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy, 9(9), 528. https://doi.org/10.3390/agronomy9090528
  • Ruiz, K. B., Biondi, S., Oses, R., Acuña Rodríguez, I. S., Antognoni, F., Martinez Mosqueira, E. A., Coulibaly, A., Canahua Murillo, A., Pinto, M., Zurita Silva, A., Bazile, D., Jacobsen, S.-E., ve Molina Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change: A review. Agronomy for Sustainable Development, 34(2), 349–359. https://doi.org/10.1007/s13593-013-0195-0
  • Saleh, M., Salehi, M., Khanaki, S., Ebrahimian, H., Liaghat, A., Mousavi, S. M., Pashapour, S., ve Ashrafi, A. (2025). Effects of treated wastewater irrigation on soil properties, nutrient uptakes, and crop yields of agronomic crops under different crop rotations. Agricultural Water Management, 289, 109585. https://doi.org/10.1016/j.agwat.2025.109585
  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., ve Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(5), 468–474. https://doi.org/10.1038/nbt0595-468
  • Sánchez-Bermúdez, M., del Pozo, J. C., ve Pernas, M. (2022). Effects of combined abiotic stresses related to climate change on root growth in crops. Frontiers in Plant Science, 13, 918537. https://doi.org/10.3389/fpls.2022.918537
  • Sardans, J., Lambers, H., Preece, C., Alrefaei, A. F., ve Peñuelas, J. (2023). Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? The Plant Journal, 115(6), 1237–1255. https://doi.org/10.1111/tpj.16184
  • Säumel, I., Weber, F., ve Kowarik, I. (2016). Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environmental Science ve Policy, 62, 24–33. https://doi.org/10.1016/j.envsci.2015.11.012
  • Smanov, Z., Duisenbayev, S., Zulpykharov, K., Laiskhanov, S., Turymtayev, Z., Kozhayev, Z., Atasoy, E., ve Taukebayev, O. (2025). Soil salinization and its impact on the degradation of agricultural landscapes of the Talas district, Kazakhstan. Journal of the Geographical Institute “Jovan Cvijić” SASA, 75(2), 233–250. https://doi.org/10.2298/IJGI2502233S
  • Snyder, R. L., ve de Melo-Abreu, J. P. (2005). Frost protection: Fundamentals, practice and economics. FAO.
  • Soma, F., Mogami, J., Yoshida, T., ve Nakashima, K. (2020). ABA-unresponsive SnRK2 kinases. Nature Plants, 6(4), 408–420.
  • Stommel, J. R., ve Bosland, P. W. (2006). Ornamental pepper. In N. O. Anderson (Ed.), Flower breeding and genetics (pp. 561–599). Springer. Tan, J. K. N., Lee, L. Y., Tan, P. Y., ve Jim, C. Y. (2021). Urban heat island mitigation by vegetation. Urban Forestry ve Urban Greening, 64, 127260.
  • Theodorou, P., Radzevičiūtė, R., Lentendu, G., Kahnt, B., Husemann, M., Bleidorn, C., Settele, J., Schweiger, O., Grosse, I., Wubet, T., Murray, T. E., ve Paxton, R. J. (2020). Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 11(1), 576. https://doi.org/10.1038/s41467-020-14496-6
  • Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A., ve Raizada, M. N. (2016). Belowground nitrogen transfer. Agronomy for Sustainable Development, 36, 58.
  • Tojić, T., Đorđević, T., Đurović Pejčev, R., Aćimović, M., Božić, D., Radivojević, L., Sarić Krsmanović, M., ve Vrbničanin, S. (2025). Allelopathic potential of Artemisia absinthium and Artemisia vulgaris from Serbia: Chemical composition and bioactivity on weeds. Plants, 14(11), 1663. https://doi.org/10.3390/plants14111663
  • Upchurch, R. G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters, 30, 967–977. https://doi.org/10.1007/s10529-008-9639-z
  • Üstündağ, Ç., Karataş, Ş. İ., Parıldar, N. N., ve Artar, M. (2023). Kentsel ısı adalarının azaltılmasında yeşil altyapı sistemlerinin önemi. Peyzaj ve Ekoloji Dergisi, 5(2), 124–134. https://doi.org/10.53784/peyzaj.1406139
  • VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., ve Xiao, L. (2005). Green roof stormwater retention: Effects of roof surface, slope, and media depth. Journal of Environmental Quality, 34(3), 1036–1044. https://doi.org/10.2134/jeq2004.0364
  • Ventura, Y., ve Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153. https://doi.org/10.1016/j.envexpbot.2012.07.010
  • Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., ve Bovy, A. G. (2013). Secondary metabolites of Capsicum species and their importance in the human diet. Journal of Natural Products, 76(4), 783–793. https://doi.org/10.1021/np300898z
  • Wang, W., Vinocur, B., Shoseyov, O., ve Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252. https://doi.org/10.1016/j.tplants.2004.03.006
  • Werkenthin, M., Kluge, B., ve Wessolek, G. (2014). Metals in European roadside soils and soil solution – A review. Environmental Pollution, 189, 98–110. https://doi.org/10.1016/j.envpol.2014.02.025
  • Whittinghill, L. J., ve Rowe, D. B. (2012). The role of green roof technology in urban agriculture. Renewable Agriculture and Food Systems, 27(4), 314–322. https://doi.org/10.1017/S174217051100038X
  • Wu, Y., Li, X., Yu, L., Wang, T., Wang, J., ve Liu, T. (2022). Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resources, Conservation and Recycling, 181, 106261. https://doi.org/10.1016/j.resconrec.2022.106261
  • Xiong, Z. (1998). Heavy metal contamination of urban soils and plants in relation to traffic in Wuhan City, China. Toxicological and Environmental Chemistry, 65(1), 31–39. https://doi.org/10.1080/02772249809358555
  • Xu, Q., Wang, J., ve Shi, W. (2023). Source apportionment and potential ecological risk assessment of heavy metals in soils on a large scale in China. Environmental Geochemistry and Health, 45(5), 1413–1427. https://doi.org/10.1007/s10653-022-01266-0
  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., ve Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359
  • Yoshida, T., Mogami, J., ve Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology, 21, 133–139. https://doi.org/10.1016/j.pbi.2014.07.009
  • Zarzyńska, K., Boguszewska-Mańkowska, D., ve Nosalewicz, A. (2017). Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant, Soil and Environment, 63(3), 159–164. https://doi.org/10.17221/4/2017-PSE
  • Zheng, S., Zhao, W., Liu, Z., Geng, Z., Li, Q., Liu, B., Li, B., ve Bai, J. (2024). Establishment and maintenance of heat-stress memory in plants. International Journal of Molecular Sciences, 25(16), 8976. https://doi.org/10.3390/ijms25168976
  • Zhou, J., Zhang, Z., Zhang, Y., Wei, Y., ve Jiang, Z. (2018). Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLOS ONE, 13(3), e0191139. https://doi.org/10.1371/journal.pone.0191139
  • Zhou, R., Yu, X., Ottosen, C.-O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T., ve Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17, Article 24. https://doi.org/10.1186/s12870-017-0974-2
Toplam 130 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sebze Yetiştirme ve Islahı
Bölüm Derleme
Yazarlar

Şebnem Köklü Ardıç 0000-0002-5769-2963

Gönderilme Tarihi 18 Eylül 2025
Kabul Tarihi 10 Aralık 2025
Erken Görünüm Tarihi 30 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Köklü Ardıç, Ş. (2025). Geleceğin Kent Bahçeleri: Abiyotik Strese Toleranslı Sebze Türleri ile Sürdürülebilir Tasarım. Bozok Tarım ve Doğa Bilimleri Dergisi, 4(2), 136-158. https://doi.org/10.59128/bojans.1786667

Amaç ve Kapsam

Tarım ve doğal hayat ile ilgili özgün ve ileri teknoloji araştırma sonuç ve yorumlarını yayınlamayı hedeflemektedir. Hayvansal üretim, bitkisel üretim, su ürünleri, toprak bilimi, sürdürülebilir tarım sistemleri, tarım ekonomisi, genetik, tarımsal istatistik, bitki koruma, tarım makineleri, gıda mühendisliği, biyoloji, biyoteknoloji, peyzaj mimarlığı, orman mühensdisliği, endüstriyel kenevir  konularında araştırma ve derleme makalelerini yayınlamaktadır.

Dergi yeni bulgular ortaya koyan ulaşılabilir ve uygulanabilir temel ve uygulamalı yöntem ve tekniklerin sunulduğu bir platformdur. Güncel konularda hazırlanan derleme çalışmalarda basım için kabul edilebilir. Basım dili Türkçe ve İngilizcedir.

Dergiye gönderilecek makale, A4 boyutunda olmalıdır. Makalenin her sayfası ve satırları numaralandırılmalıdır. Makale toplam 20 sayfayı geçmemelidir.

Dergimizin ŞABLONUNU kullanmanızı öneririz. ŞABLON için tıklayınız:

TELİF HAKKI DEVİR FORMU için tıklayınız:

KAPAK DOSYASI için tıklayınız:


Yazar ad(lar)ı açık olarak ve 11 punto Calibri yazı tipi ile yazılmalı (akademik unvan belirtilmemeli), tüm yazarların adres bilgileri ile yazışma yapılacak yazarın iletişim bilgileri (e-mail, telefon, ORCID ID vb.) belirtilmeli ve 10 punto Calibri yazı tipi kullanılmalıdır. Adresler kelimelerin ilk harfi büyük olacak şekilde, yazar adlarının hemen altında açıkça yazılmalıdır.
(YAZAR ADLARı ve ADRESLERİ, Tam Metinde yazılmamalı, Kapak Yazısı içinde belirtilmelidir). Sayfa Numarası sağ alt köşede verilmelidir.
Dergiye sunulan makale: Özet, Abstract, Giriş, Materyal ve Yöntem, Bulgular ve Tartışma, Sonuç, Teşekkür (gerekirse) ve Kaynaklar bölümlerinden oluşmalıdır.

Başlık: Makale başlığı kısa ve açıklayıcı ve 20 kelimeyi geçmemelidir ve kısaltma içermemelidir.

Özet: Hem Türkçe ve hem de İngilizce özet 250 kelimeyi geçmeyecek şekilde yazılmalı, makalenin amacını, çalışmanın önemli veri ve sonuçlarını içermelidir. İngilizce hazırlanan makalelerde Türkçe özete gerek yoktur.

Anahtar kelimeler: Alfabetik sıraya göre 5 kelimeyi geçmeyecek ve en az 3 kelime olacak şekilde verilmelidir.

Giriş: Bu bölüm çalışmadaki problemi açıkça ifade etmeli, önceki ve özellikle son yıllardaki yapılan ve yayınlanan çalışmaları açıklamalı, çalışmanın amaçlarını açıkça vermelidir.

Materyal ve Yöntem: Bu bölüm, çalışmada kullanılan tüm materyalleri içermeli, yöntemler detaylı açıklanmalı, istatistiksel metotlar açıklanmalıdır.

Sonuçlar ve Tartışma: Çalışmadaki elde edilen veriler ve bulgular tablo ve bilgi olarak verilmeli, önceki yapılan çalışma sonuçlarına göre yorumlanarak tartışılmalıdır.

Teşekkür: Bu bölümde çalışmanın yapılmasına katkı veren kişi, kuruluş ve projelere yer verilebilir.

Şekiller ve çizelgeler: Tüm şekil ve tablolar numaralandırılıp makale içerisinde olması gereken yerde  verilmelidir. Şekil ve tablo genişlikleri 8 veya 15 cm olabilir. Resimler renkli ve her çözünürlükte olabilir. Makalenin sonunda (Kaynaklardan sonra) Şekiller ve tablolar konumlandırılmalıdır. Resim çözünürlükleri iyi (anlaşılabilir) olmalıdır.

Kaynak Gösterme biçimi APA 6'dır
Kaynaklar: Makale içinde tek yazar için yazarın soyadı ve yayım tarihi (Akın, 2022), ikili yazarlarda yazar soyadları arasında ‘ve’ (Karadağ ve Yılmaz 2019) şeklinde verilmelidir. 3 ve daha fazla yazarların atıf ve kaynak gösteriminde ilk yazarın soyadından sonra ‘ve ark.’ (Gürbüz ve ark., 2021) şeklinde yazılmalıdır. Aynı yazarın aynı tarihli birden fazla eserine atıfta bulunulacaksa, yıla bitişik biçimde ‘a, b’ şeklinde harflendirilmesi yapılmalıdır (Gülümser, 2015a,b). Kaynaklar bölümü alfabetik ve kronolojik sıralamaya göre 12 punto -1,25 cm Asılı girinti verilmelidir. Kaynaklar; yararlanılan makale, kitap, kongre bildirisi, kitap bölümü vb. aşağıda verilenler gibi listelenmelidir:

Yazici, K. ve Gülgün B. (2021). The Alternatives Use of Aquatic Plants in Geopark within Approach Landscape Ecology. Environment, Development and Sustainability, 23, 4086–4102.

Gürbüz, Y. (2019). Determination of The Effect of Technological Procedures Applied in Feed Factories on Mixed Feed Nutrition and Forming Quality Critical Points. Turkish Journal of Agriculture - Food Science and Technology, 7(12), 2245–2251.

Gülgün B., Köse, M., Yazici, K., Dursun, Ş., Ankaya, F., ve Köse, H. (2015). Soil polutions in The Environment Created by Developing Technology and Biological Measures in Soil Pollution. Presented at the 5th Internatonal Conference of Ecosystems, Tirana. (Bildiri alıntı örneği)

FAO, (2019). World chestnut production list. http://www.fao.org/faostat/en/#data/QC. Access date: 03.06.2020 (Yazarı olmayan web site alıntı)

Yazici, K. (2021).Peyzajın Temel Yapı Taşları. Gece Kitabevi,  Basım sayısı:1, Sayfa sayısı:255, ISBN:978-625-7793-41-4, Ankara. (Kitap alıntı örneği)

Yazici, K. (2018). The Most Recent Studıes in Scıence and Art, Evaluatıon of The Vısual Qualıty of Hıstorıcal Surroundıngs in Urban Landscape wıth Q-Sort Analysıs,  ISBN:978-605-288-356-3, Bölüm Sayfaları:537 -551. (Kitap Böl. Alıntı Örneği).

Yılmaz, G. (1993).Bazı patates (Solanum tuberosum L.) çeşit ve hatlarında genotip x çevre etkileşimleri üzerinde araştırmalar, Gaziosmanpaşa Üniversitesi , Fen Bilimleri Enstitüsü, Tarla Bitkileri Ana Bilim Dalı Anabilim dalı, Doktora Tezi. (Tez alıntı Örneği)

BOZOK TARIM VE DOĞA BİLİMLERİ DERGİSİ'nin yayın etiği ve açık erişim politikası, yayın sürecinin tüm paydaşlarının kılavuz ve politikalar doğrultusunda etik ilkelere uymasını şart koşmaktadır (Örneğin, "Yayın Etiği Kurulu (COPE) Davranış Kuralları ve En İyi Uygulama İlkeleri" Dergi Editörleri için; Yayın Etiği Komitesi (Committee on Publication Ethics, COPE) tarafından açık erişimle yayınlanan "Dergi Editörleri için Davranış Kuralları ve En İyi Uygulama Yönergeleri" ve" Dergi Editörleri için COPE En İyi Uygulama Yönergeleri").

Makalelerde kullanılan verilerin manipüle edilmesi, tahrif edilmesi, makyaj verilerinin kullanılması gibi durumların tespiti halinde, bu durum yazar(lar)ın kurumlarına resmi olarak bildirilecek ve makale reddedilecektir. Dergi, editörler ve/veya hakemler tarafından verilen geri bildirimlere göre yazarların analiz sonuçlarının çıktı dosyalarını talep etme hakkına sahiptir.


Yayıncının Etik Sorumlulukları

BOZOK TARIM VE DOĞA BİLİMLERİ DERGİSİ' kamu yararınadır ve kar amacı gütmez. Derginin yayın kurulu bir baş editör, bir editör yardımcısı ve alan editörlerinden oluşur. Ayrılan üyenin yerine yeni üye atanır. Editör, makalenin konusuna göre, gerektiğinde yayın kurulu üyesi olmayan ve en az doktora derecesine sahip öğretim üyelerine alan editörü olarak değerlendirilmek üzere makale gönderebilir.

Dergi Yayın Kurulunun Sorumlulukları

Dergiye gönderilen her yazıdan yayın kurulu sorumludur ve yayın kurulu bu sorumluluğun bilincindedir.
Yayın kurulu, dergiyi geliştirmek ve yayın kalitesini sürekli artırmak için çalışmaktadır.
Yayın kurulu, yayın, kör hakemlik, değerlendirme süreci, etik ilkeler gibi dergi politikalarının belirlenmesini ve uygulanmasını sağlar.
Yayın kurulu, makale ve dergilerde fikri mülkiyet hakları, bilim dışı, etik dışı davranışlar ve intihal ile ilgili önlemlerin alınmasından sorumludur.
Dergiye gönderilen yazılar için uzman hakem atama sorumluluğu yayın kuruluna aittir.

BOZOK TARIM VE DOĞA BİLİMLERİ DERGİSİ'nde yayınlanan makale, derleme vb. yazılardan ücret alınmaz, ayrıca dergi yazarlara herhangi bir ücret ödemez.