Review
BibTex RIS Cite

ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ

Year 2021, , 52 - 63, 30.04.2021
https://doi.org/10.46413/boneyusbad.874087

Abstract

The prevalence of Type 2 diabetes is increasing day by day with the increasing rate of obesity worldwide and the widespread use of sedentary lifestyle. Dietary interventions are one of the most basic treatment approaches to prevent and treat diabetes-related complications. Intermittent fasting is one of the dietary interventions used both in weight control and in the treatment of chronic diseases. Intermittent fasting is an eating model that includes individual eating alternatives and is defined as a long-term hunger phase. The most widely used intermittent fasting (IF) models; time restricted nutrition, early time restricted nutrition, B2 diet, 5:2 diet, alternative day fasting, combination of intermittent fasting and calorie restriction, intermittent very low calorie diet applications are examples. Various IF diets have gained popularity in recent years in achieving weight loss in obese individuals. Studies evaluating the effects and usability of intermittent fasting diets in individuals with prediabetes and type 2 diabetes are insufficient. In this review, the effects of various intermittent fasting diet programs on diabetes-related biochemical markers, tests, and blood lipids in healthy diabetic or non-diabetic individuals were examined.

References

  • Aguiree, F., Brown, A., Cho, N., Dahlquist, G., Aguiree, B., Cho, D., Dodd, D. Whiting (2013) IDF Diabetes Atlas. IDF Diabetes Atlas, 6th Edition, International Diabetes Federation, Basel, 74-90.
  • Aksungar, F. B., Sarikaya, M., Coskun, A., Serteser, M., Unsal, I. (2017). Comparison of intermittent fasting versus caloric restriction in obese subjects: A two year follow-up. The journal of nutrition, health & aging, 21(6), 681-685. doi: 10.1007/s12603-016-0786-y
  • Andersen, C. J., Fernandez, M. L. (2013). Dietary strategies to reduce metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 14(3), 241-254. doi: 10.1007/s11154-013-9251-y
  • Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous III, A. G., . . . Mattson, M. P. (2018). Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity, 26(2), 254-268. doi: 10.1002/oby.22065
  • Asemi, Z., Samimi, M., Taghizadeh, M., Esmaillzadeh, A. (2015). Effects of Ramadan fasting on glucose homeostasis, lipid profiles, inflammation and oxidative stress in women with polycystic ovary syndrome in Kashan, Iran. Archives of Iranian medicine, 18(12), 0-0.
  • Ash, S., Reeves, M. M., Yeo, S., Morrison, G., Carey, D., Capra, S. (2003). Effect of intensive dietetic interventions on weight and glycaemic control in overweight men with Type II diabetes: a randomised trial. International journal of obesity, 27(7), 797-802. doi: 10.1038/sj.ijo.0802295
  • Atlas, D. (2015). International diabetes federation. IDF diabetes atlas. Brussels: International Diabetes Federation.
  • Cai, H., Qin, Y.-L., Shi, Z.-Y., Chen, J.-H., Zeng, M.-J., Zhou, W., . . . Chen, Z.-Y. (2019). Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC gastroenterology, 19(1), 219.
  • Carter, S., Clifton, P., Keogh, J. (2016). The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes research and clinical practice, 122, 106-112. doi: 10.1016/j.diabres.2016.10.010
  • Carter, S., Clifton, P. M., Keogh, J. B. (2018). Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA network open, 1(3), e180756-e180756. doi: 10.1001/jamanetworkopen.2018.0756
  • Catenacci, V. A., Pan, Z., Ostendorf, D., Brannon, S., Gozansky, W. S., Mattson, M. P., . . . Troy Donahoo, W. (2016). A randomized pilot study comparing zero‐calorie alternate‐day fasting to daily caloric restriction in adults with obesity. Obesity, 24(9), 1874-1883. doi: 10.1002/oby.21581
  • Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., . . . Kuriakose, K. (2017). Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8, 6. doi: 10.3389/fendo.2017.00006
  • Cheng, A. (2013). Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Introduction. Canadian journal of diabetes, 37, S1-3.
  • Cheng, C. M., Kelley, B., Wang, J., Strauss, D., Eagles, D. A., Bondy, C. A. (2003). A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology, 144(6), 2676-2682. doi: 10.1210/en.2002-0057
  • Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., . . . Kemnitz, J. W. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201-204. doi: 10.1126/science.1173635
  • Corley, B., Carroll, R., Hall, R., Weatherall, M., Parry‐Strong, A., Krebs, J. (2018). Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabetic Medicine, 35(5), 588-594. doi: 10.1111/dme.13595
  • Dall, K. B., Færgeman, N. J. (2019). Metabolic regulation of lifespan from a C. elegans perspective. Genes & nutrition, 14(1), 1-12. doi: 10.1186/s12263-019-0650-x de Cabo, R., Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541-2551. doi: 10.1056/NEJMra1905136
  • Di Francesco, A., Di Germanio, C., Bernier, M., de Cabo, R. (2018). A time to fast. Science, 362(6416), 770-775. doi: 10.1126/science.aau2095
  • Finkel, T. (2015). The metabolic regulation of aging. Nature medicine, 21(12), 1416-1423. doi: 10.1038/nm.3998
  • Gnanou, J. V., Caszo, B. A., Khalil, K. M., Abdullah, S. L., Knight, V. F., Bidin, M. Z. (2015). Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males. Journal of Diabetes & Metabolic Disorders, 14(1), 55. doi: 10.1186/s40200-015-0183-9
  • Grajower, M. M., Horne, B. D. (2019). Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients, 11(4), 873. doi: 10.3390/nu11040873
  • Hardie, D. G. (2015). AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Current opinion in cell biology, 33, 1-7. doi: 10.1016/j.ceb.2014.09.004
  • Hoddy, K. K., Kroeger, C. M., Trepanowski, J. F., Barnosky, A., Bhutani, S., Varady, K. A. (2014). Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults. Obesity, 22(12), 2524-2531. doi: 10.1002/oby.20909
  • Horne, B. D., Muhlestein, J. B., Anderson, J. L. (2015). Health effects of intermittent fasting: hormesis or harm? A systematic review. The American journal of clinical nutrition, 102(2), 464-470. doi: 10.3945/ajcn.115.109553
  • Hutchison, A. T., Heilbronn, L. K. (2016). Metabolic impacts of altering meal frequency and timing–does when we eat matter? Biochimie, 124, 187-197. doi: 10.1016/j.biochi.2015.07.025
  • Kahleova, H., Belinova, L., Malinska, H., Oliyarnyk, O., Trnovska, J., Skop, V., . . . Tura, A. (2014). Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia, 57(8), 1552-1560. doi: 10.1007/s00125-014-3253-5
  • Kiyani, M. M., Memon, A. R., Amjad, M. I., Ameer, M. R., Sadiq, M., Mahmood, T. (2017). Study of human Biochemical parameters during and after Ramadan. Journal of religion and health, 56(1), 55-62. doi: 10.1007/s10943-015-0084-8
  • Klempel, M. C., Bhutani, S., Fitzgibbon, M., Freels, S., Varady, K. A. (2010). Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutrition journal, 9(1), 35. doi: 10.1186/1475-2891-9-35
  • Klempel, M. C., Kroeger, C. M., Bhutani, S., Trepanowski, J. F., Varady, K. A. (2012). Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutrition journal, 11(1), 98. doi: 10.1186/1475-2891-11-98
  • Kobilo, T., Guerrieri, D., Zhang, Y., Collica, S. C., Becker, K. G., van Praag, H. (2014). AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learning & memory, 21(2), 119-126. doi: 10.1101/lm.033332.113
  • Lefevre, M., Redman, L. M., Heilbronn, L. K., Smith, J. V., Martin, C. K., Rood, J. C., . . . Ravussin, E. (2009). Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis, 203(1), 206-213. doi: 10.1016/j.atherosclerosis.2008.05.036
  • Leiter, L. A., Fitchett, D. H., Gilbert, R. E., Gupta, M., Mancini, G. J., McFarlane, P. A., . . . Anand, S. (2011). Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Canadian Journal of Cardiology, 27(2), e1-e33. doi: 10.1016/j.cjca.2010.12.054
  • M'guil, M., Ragala, M., El Guessabi, L., Fellat, S., Chraibi, A., Chebraoui, L., . . . Lyoussi, B. (2008). Is Ramadan fasting safe in type 2 diabetic patients in view of the lack of significant effect of fasting on clinical and biochemical parameters, blood pressure, and glycemic control? Clinical and experimental hypertension, 30(5), 339-357. doi:10.1080/10641960802272442
  • Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell metabolism, 16(6), 706-722. doi: 10.1016/j.cmet.2012.08.012
  • Mazidi, M., Rezaie, P., Chaudhri, O., Karimi, E., Nematy, M. (2015). The effect of Ramadan fasting on cardiometabolic risk factors and anthropometrics parameters: a systematic review. Pakistan journal of medical sciences, 31(5), 1250. doi: 10.12669/pjms.315.7649
  • Palacios, O. M., Carmona, J. J., Michan, S., Chen, K. Y., Manabe, Y., Ward III, J. L., . . . Tong, Q. (2009). Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY), 1(9), 771. doi: 10.18632/aging.100075
  • Parvaresh, A., Razavi, R., Abbasi, B., Yaghoobloo, K., Hassanzadeh, A., Mohammadifard, N., . . . Clark, C. C. (2019). Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: A randomized clinical trial. Complementary therapies in medicine, 47, 102187. doi: 10.1016/j.ctim.2019.08.021
  • Rajpal, A., Ismail‐Beigi, F. (2020). Intermittent Fasting and “Metabolic Switch”: Effects on Metabolic Syndrome, Pre‐diabetes and Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism. doi: 10.1111/dom.14080
  • Rothschild, J., Hoddy, K. K., Jambazian, P., Varady, K. A. (2014). Time-restricted feeding and risk of metabolic disease: a review of human and animal studies. Nutrition reviews, 72(5), 308-318. doi: 10.1111/nure.12104
  • Sleiman, S. F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., . . . Ratan, R. R. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife, 5, e15092. doi: 10.7554/eLife.15092
  • Sundfør, T., Svendsen, M., Tonstad, S. (2018). Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutrition, Metabolism and Cardiovascular Diseases, 28(7), 698-706. doi: 10.1016/j.numecd.2018.03.009
  • Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell metabolism, 27(6), 1212-1221. e1213. doi: 10.1016/j.cmet.2018.04.010
  • Trepanowski, J. F., Kroeger, C. M., Barnosky, A., Klempel, M. C., Bhutani, S., Hoddy, K. K., . . . Rood, J. (2017). Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA internal medicine, 177(7), 930-938. doi: 10.1001/jamainternmed.2017.0936
  • Turner, R. C., Cull, C. A., Frighi, V., Holman, R. R., Group, U. P. D. S. (1999). Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). Jama, 281(21), 2005-2012. doi: 10.1001/jama.281.21.2005
  • Üner, S., Balcılar, M., Ergüder, T. (2018). Türkiye hanehalkı sağlık araştırması: bulaşıcı olmayan hastalıkların risk faktörleri prevalansı 2017 (STEPS). Dünya Sağlık Örgütü Türkiye Ofisi, Ankara.
  • Varady, K. A. (2016). Impact of intermittent fasting on glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 19(4), 300-302. doi: 10.1097/MCO.0000000000000291
  • Varady, K. A., Bhutani, S., Church, E. C., Klempel, M. C. (2009). Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. The American journal of clinical nutrition, 90(5), 1138-1143. doi: 10.3945/ajcn.2009.28380
  • Varady, K. A., Dam, V. T., Klempel, M. C., Horne, M., Cruz, R., Kroeger, C. M., Santosa, S. (2015). Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Scientific reports, 5, 7561. doi: DOI: 10.1038/srep07561
  • Veech, R. (2003). Ketoacids Good medicine. Trans Am Clin Climatol Assoc, 114, 149-161.
  • Williams, K. V., Mullen, M. L., Kelley, D. E., Wing, R. R. (1998). The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes care, 21(1), 2-8. doi: 10.2337/diacare.21.1.2
  • Wu, M. M., Brown, G. L., Kim, K.-Y. A., Kim, J., Gordon, K. E. (2019). Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals. Journal of neuroengineering and rehabilitation, 16(1), 4. doi: 10.1186/s12984-018-0475-7
  • Wycherley, T. P., Moran, L. J., Clifton, P. M., Noakes, M., Brinkworth, G. D. (2012). Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 96(6), 1281-1298. doi: 10.3945/ajcn.112.044321
  • Yang, J.-L., Lin, Y.-T., Chuang, P.-C., Bohr, V. A., Mattson, M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular medicine, 16(1), 161-174. doi: 10.1007/s12017-013-8270-x

ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ

Year 2021, , 52 - 63, 30.04.2021
https://doi.org/10.46413/boneyusbad.874087

Abstract

Dünya çapında obezite oranının artması ve sedanter yaşam tarzının yaygınlaşmasıyla Tip 2 diyabet prevalansı her geçen gün artış göstermektedir. Diyet müdahaleleri, diyabetle ilgili komplikasyonların önlenmesi ve tedavisinde en temel tedavi yaklaşımlarından birisidir. Aralıklı açlık, günümüzde hem vücut ağırlığının kontrolünde, hem de kronik hastalıkların tedavisinde kullanılan diyet müdahalelerinden birisidir. Aralıklı açlık, bireysel yeme dönemi alternatiflerini içeren ve uzun süreli açlık aşaması olarak tanımlanan bir yeme modelidir. En yaygın kullanılan aralıklı açlık (intermittent fasting (IF)) modellerine; zaman kısıtlı beslenme, erken zaman kısıtlamalı beslenme, B2 diyeti, 5:2 diyeti, alternatif gün açlığı, aralıklı açlık ve kalori kısıtlamasının kombinasyonu, aralıklı çok düşük kalorili diyet uygulamaları örnek olarak verilebilmektedir. Çeşitli IF diyetleri son yıllarda, obez bireylerde kilo kaybının sağlamada popülerlik kazanmıştır. Prediyabet ve tip 2 diyabet tanısı olan bireylerde aralıklı açlık diyetlerinin etkilerinin ve kullanılabilirliğinin değerlendirildiği çalışmalar yetersizdir. Bu derlemede, çeşitli aralıklı açlık diyet programlarının, sağlıklı diyabetik veya diyabetik olmayan bireylerde, diyabetle ilişkili biyokimyasal belirteçler, testler ve kan lipitleri üzerindeki etkileri incelenmiştir

References

  • Aguiree, F., Brown, A., Cho, N., Dahlquist, G., Aguiree, B., Cho, D., Dodd, D. Whiting (2013) IDF Diabetes Atlas. IDF Diabetes Atlas, 6th Edition, International Diabetes Federation, Basel, 74-90.
  • Aksungar, F. B., Sarikaya, M., Coskun, A., Serteser, M., Unsal, I. (2017). Comparison of intermittent fasting versus caloric restriction in obese subjects: A two year follow-up. The journal of nutrition, health & aging, 21(6), 681-685. doi: 10.1007/s12603-016-0786-y
  • Andersen, C. J., Fernandez, M. L. (2013). Dietary strategies to reduce metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 14(3), 241-254. doi: 10.1007/s11154-013-9251-y
  • Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous III, A. G., . . . Mattson, M. P. (2018). Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity, 26(2), 254-268. doi: 10.1002/oby.22065
  • Asemi, Z., Samimi, M., Taghizadeh, M., Esmaillzadeh, A. (2015). Effects of Ramadan fasting on glucose homeostasis, lipid profiles, inflammation and oxidative stress in women with polycystic ovary syndrome in Kashan, Iran. Archives of Iranian medicine, 18(12), 0-0.
  • Ash, S., Reeves, M. M., Yeo, S., Morrison, G., Carey, D., Capra, S. (2003). Effect of intensive dietetic interventions on weight and glycaemic control in overweight men with Type II diabetes: a randomised trial. International journal of obesity, 27(7), 797-802. doi: 10.1038/sj.ijo.0802295
  • Atlas, D. (2015). International diabetes federation. IDF diabetes atlas. Brussels: International Diabetes Federation.
  • Cai, H., Qin, Y.-L., Shi, Z.-Y., Chen, J.-H., Zeng, M.-J., Zhou, W., . . . Chen, Z.-Y. (2019). Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC gastroenterology, 19(1), 219.
  • Carter, S., Clifton, P., Keogh, J. (2016). The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes research and clinical practice, 122, 106-112. doi: 10.1016/j.diabres.2016.10.010
  • Carter, S., Clifton, P. M., Keogh, J. B. (2018). Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA network open, 1(3), e180756-e180756. doi: 10.1001/jamanetworkopen.2018.0756
  • Catenacci, V. A., Pan, Z., Ostendorf, D., Brannon, S., Gozansky, W. S., Mattson, M. P., . . . Troy Donahoo, W. (2016). A randomized pilot study comparing zero‐calorie alternate‐day fasting to daily caloric restriction in adults with obesity. Obesity, 24(9), 1874-1883. doi: 10.1002/oby.21581
  • Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., . . . Kuriakose, K. (2017). Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Frontiers in Endocrinology, 8, 6. doi: 10.3389/fendo.2017.00006
  • Cheng, A. (2013). Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Introduction. Canadian journal of diabetes, 37, S1-3.
  • Cheng, C. M., Kelley, B., Wang, J., Strauss, D., Eagles, D. A., Bondy, C. A. (2003). A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology, 144(6), 2676-2682. doi: 10.1210/en.2002-0057
  • Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., . . . Kemnitz, J. W. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325(5937), 201-204. doi: 10.1126/science.1173635
  • Corley, B., Carroll, R., Hall, R., Weatherall, M., Parry‐Strong, A., Krebs, J. (2018). Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabetic Medicine, 35(5), 588-594. doi: 10.1111/dme.13595
  • Dall, K. B., Færgeman, N. J. (2019). Metabolic regulation of lifespan from a C. elegans perspective. Genes & nutrition, 14(1), 1-12. doi: 10.1186/s12263-019-0650-x de Cabo, R., Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541-2551. doi: 10.1056/NEJMra1905136
  • Di Francesco, A., Di Germanio, C., Bernier, M., de Cabo, R. (2018). A time to fast. Science, 362(6416), 770-775. doi: 10.1126/science.aau2095
  • Finkel, T. (2015). The metabolic regulation of aging. Nature medicine, 21(12), 1416-1423. doi: 10.1038/nm.3998
  • Gnanou, J. V., Caszo, B. A., Khalil, K. M., Abdullah, S. L., Knight, V. F., Bidin, M. Z. (2015). Effects of Ramadan fasting on glucose homeostasis and adiponectin levels in healthy adult males. Journal of Diabetes & Metabolic Disorders, 14(1), 55. doi: 10.1186/s40200-015-0183-9
  • Grajower, M. M., Horne, B. D. (2019). Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients, 11(4), 873. doi: 10.3390/nu11040873
  • Hardie, D. G. (2015). AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Current opinion in cell biology, 33, 1-7. doi: 10.1016/j.ceb.2014.09.004
  • Hoddy, K. K., Kroeger, C. M., Trepanowski, J. F., Barnosky, A., Bhutani, S., Varady, K. A. (2014). Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults. Obesity, 22(12), 2524-2531. doi: 10.1002/oby.20909
  • Horne, B. D., Muhlestein, J. B., Anderson, J. L. (2015). Health effects of intermittent fasting: hormesis or harm? A systematic review. The American journal of clinical nutrition, 102(2), 464-470. doi: 10.3945/ajcn.115.109553
  • Hutchison, A. T., Heilbronn, L. K. (2016). Metabolic impacts of altering meal frequency and timing–does when we eat matter? Biochimie, 124, 187-197. doi: 10.1016/j.biochi.2015.07.025
  • Kahleova, H., Belinova, L., Malinska, H., Oliyarnyk, O., Trnovska, J., Skop, V., . . . Tura, A. (2014). Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia, 57(8), 1552-1560. doi: 10.1007/s00125-014-3253-5
  • Kiyani, M. M., Memon, A. R., Amjad, M. I., Ameer, M. R., Sadiq, M., Mahmood, T. (2017). Study of human Biochemical parameters during and after Ramadan. Journal of religion and health, 56(1), 55-62. doi: 10.1007/s10943-015-0084-8
  • Klempel, M. C., Bhutani, S., Fitzgibbon, M., Freels, S., Varady, K. A. (2010). Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutrition journal, 9(1), 35. doi: 10.1186/1475-2891-9-35
  • Klempel, M. C., Kroeger, C. M., Bhutani, S., Trepanowski, J. F., Varady, K. A. (2012). Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutrition journal, 11(1), 98. doi: 10.1186/1475-2891-11-98
  • Kobilo, T., Guerrieri, D., Zhang, Y., Collica, S. C., Becker, K. G., van Praag, H. (2014). AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learning & memory, 21(2), 119-126. doi: 10.1101/lm.033332.113
  • Lefevre, M., Redman, L. M., Heilbronn, L. K., Smith, J. V., Martin, C. K., Rood, J. C., . . . Ravussin, E. (2009). Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis, 203(1), 206-213. doi: 10.1016/j.atherosclerosis.2008.05.036
  • Leiter, L. A., Fitchett, D. H., Gilbert, R. E., Gupta, M., Mancini, G. J., McFarlane, P. A., . . . Anand, S. (2011). Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Canadian Journal of Cardiology, 27(2), e1-e33. doi: 10.1016/j.cjca.2010.12.054
  • M'guil, M., Ragala, M., El Guessabi, L., Fellat, S., Chraibi, A., Chebraoui, L., . . . Lyoussi, B. (2008). Is Ramadan fasting safe in type 2 diabetic patients in view of the lack of significant effect of fasting on clinical and biochemical parameters, blood pressure, and glycemic control? Clinical and experimental hypertension, 30(5), 339-357. doi:10.1080/10641960802272442
  • Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell metabolism, 16(6), 706-722. doi: 10.1016/j.cmet.2012.08.012
  • Mazidi, M., Rezaie, P., Chaudhri, O., Karimi, E., Nematy, M. (2015). The effect of Ramadan fasting on cardiometabolic risk factors and anthropometrics parameters: a systematic review. Pakistan journal of medical sciences, 31(5), 1250. doi: 10.12669/pjms.315.7649
  • Palacios, O. M., Carmona, J. J., Michan, S., Chen, K. Y., Manabe, Y., Ward III, J. L., . . . Tong, Q. (2009). Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY), 1(9), 771. doi: 10.18632/aging.100075
  • Parvaresh, A., Razavi, R., Abbasi, B., Yaghoobloo, K., Hassanzadeh, A., Mohammadifard, N., . . . Clark, C. C. (2019). Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: A randomized clinical trial. Complementary therapies in medicine, 47, 102187. doi: 10.1016/j.ctim.2019.08.021
  • Rajpal, A., Ismail‐Beigi, F. (2020). Intermittent Fasting and “Metabolic Switch”: Effects on Metabolic Syndrome, Pre‐diabetes and Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism. doi: 10.1111/dom.14080
  • Rothschild, J., Hoddy, K. K., Jambazian, P., Varady, K. A. (2014). Time-restricted feeding and risk of metabolic disease: a review of human and animal studies. Nutrition reviews, 72(5), 308-318. doi: 10.1111/nure.12104
  • Sleiman, S. F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., . . . Ratan, R. R. (2016). Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife, 5, e15092. doi: 10.7554/eLife.15092
  • Sundfør, T., Svendsen, M., Tonstad, S. (2018). Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutrition, Metabolism and Cardiovascular Diseases, 28(7), 698-706. doi: 10.1016/j.numecd.2018.03.009
  • Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell metabolism, 27(6), 1212-1221. e1213. doi: 10.1016/j.cmet.2018.04.010
  • Trepanowski, J. F., Kroeger, C. M., Barnosky, A., Klempel, M. C., Bhutani, S., Hoddy, K. K., . . . Rood, J. (2017). Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA internal medicine, 177(7), 930-938. doi: 10.1001/jamainternmed.2017.0936
  • Turner, R. C., Cull, C. A., Frighi, V., Holman, R. R., Group, U. P. D. S. (1999). Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). Jama, 281(21), 2005-2012. doi: 10.1001/jama.281.21.2005
  • Üner, S., Balcılar, M., Ergüder, T. (2018). Türkiye hanehalkı sağlık araştırması: bulaşıcı olmayan hastalıkların risk faktörleri prevalansı 2017 (STEPS). Dünya Sağlık Örgütü Türkiye Ofisi, Ankara.
  • Varady, K. A. (2016). Impact of intermittent fasting on glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 19(4), 300-302. doi: 10.1097/MCO.0000000000000291
  • Varady, K. A., Bhutani, S., Church, E. C., Klempel, M. C. (2009). Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. The American journal of clinical nutrition, 90(5), 1138-1143. doi: 10.3945/ajcn.2009.28380
  • Varady, K. A., Dam, V. T., Klempel, M. C., Horne, M., Cruz, R., Kroeger, C. M., Santosa, S. (2015). Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles. Scientific reports, 5, 7561. doi: DOI: 10.1038/srep07561
  • Veech, R. (2003). Ketoacids Good medicine. Trans Am Clin Climatol Assoc, 114, 149-161.
  • Williams, K. V., Mullen, M. L., Kelley, D. E., Wing, R. R. (1998). The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes care, 21(1), 2-8. doi: 10.2337/diacare.21.1.2
  • Wu, M. M., Brown, G. L., Kim, K.-Y. A., Kim, J., Gordon, K. E. (2019). Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals. Journal of neuroengineering and rehabilitation, 16(1), 4. doi: 10.1186/s12984-018-0475-7
  • Wycherley, T. P., Moran, L. J., Clifton, P. M., Noakes, M., Brinkworth, G. D. (2012). Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 96(6), 1281-1298. doi: 10.3945/ajcn.112.044321
  • Yang, J.-L., Lin, Y.-T., Chuang, P.-C., Bohr, V. A., Mattson, M. P. (2014). BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular medicine, 16(1), 161-174. doi: 10.1007/s12017-013-8270-x
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section REVIEW ARTICLE
Authors

Zeynep Kalaycı 0000-0002-9148-4164

Hülya Kamarlı Altun 0000-0001-9878-9297

Publication Date April 30, 2021
Submission Date February 4, 2021
Acceptance Date March 28, 2021
Published in Issue Year 2021

Cite

APA Kalaycı, Z., & Kamarlı Altun, H. (2021). ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, 3(1), 52-63. https://doi.org/10.46413/boneyusbad.874087
AMA Kalaycı Z, Kamarlı Altun H. ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. April 2021;3(1):52-63. doi:10.46413/boneyusbad.874087
Chicago Kalaycı, Zeynep, and Hülya Kamarlı Altun. “ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi 3, no. 1 (April 2021): 52-63. https://doi.org/10.46413/boneyusbad.874087.
EndNote Kalaycı Z, Kamarlı Altun H (April 1, 2021) ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 3 1 52–63.
IEEE Z. Kalaycı and H. Kamarlı Altun, “ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ”, Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi, vol. 3, no. 1, pp. 52–63, 2021, doi: 10.46413/boneyusbad.874087.
ISNAD Kalaycı, Zeynep - Kamarlı Altun, Hülya. “ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 3/1 (April 2021), 52-63. https://doi.org/10.46413/boneyusbad.874087.
JAMA Kalaycı Z, Kamarlı Altun H. ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2021;3:52–63.
MLA Kalaycı, Zeynep and Hülya Kamarlı Altun. “ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ”. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri Ve Araştırmaları Dergisi, vol. 3, no. 1, 2021, pp. 52-63, doi:10.46413/boneyusbad.874087.
Vancouver Kalaycı Z, Kamarlı Altun H. ARALIKLI AÇLIK DİYETLERİNİN GLUKOZ HOMEOSTAZI VE LİPİT METABOLİZMASI ÜZERİNE ETKİLERİ. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi. 2021;3(1):52-63.

23788 Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.