Review
BibTex RIS Cite

Use of Hexagonal Boron Nitride in Lithium Ion Battery Separators and Developments

Year 2022, Volume: 7 Issue: 1, 440 - 452, 29.03.2022
https://doi.org/10.30728/boron.1008704

Abstract

In today's world, due to the ever-increasing energy demand and the necessity of reducing carbon emisions create various difficulties and challenges. This requires concentrating on other types of energy, namely renewable energy sources, and efficient energy storage. High power density, long-lasting and cost-effective storage devices are demanded for the energy storage, and battery technology is the solution to this need. Lithium-ion batteries (LIB) are the most popular rechargeable batteries for portable electronic devices. Having high electrical density, high speed charging feature, slow discharge and long life are the advantages. Lithium-ion batteries are more expensive than NiCd batteries, but smaller and lighter, they operate over a wide temperature range. Thanks to these features, LIB has been started to be used in many areas. The major disadvantage of LIB is its degradation at high temperatures. The components of the battery have a great influence on this problem. The separators are one of the most important components that are not directly involved in the electrochemical reaction inside the batteries, prevent internal short circuits by breaking the contact between the electrodes, store liquid electrolytes, ensure efficient transfer of ions during charge-discharge processes, and enable the use of LIBs at high temperatures.. In this review, we try to provide a comprehensive overview of the use of hexagonal boron nitride in LIBs.

References

  • Referans 1 Aydın, H., Çelik, S. Ü., & Bozkurt, A. (2017). Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers For Lithium İon Battery Application. Solid State Ionics, 309, 71–76.
  • Referans2 Rahman, M. M., Mateti, S., Cai, Q., Sultana, I., Fan, Y., Wang, X., Hou, C., & Chen, Y. (2019). High Temperature and High Rate Lithium-İon Batteries With Boron Nitride Nanotubes Coated Polypropylene Separators. Energy Storage Materials, 19, 352–359.
  • [3] Di Lecce, D., Verrelli, R., & Hassoun, J. (2017). Lithium-İon Batteries For Sustainable Energy Storage: Recent Advances Towards New Cell Configurations. Içinde Green Chemistry, 19(15),3442–3467.
  • [4] Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. 30, 1800561.
  • [5] Grinstaff, M., Mark, S., & Grinstaff, W. (2016). Featuring work from the research group of Professor As featured in : High temperature electrical energy storage : advances , challenges , and frontiers. Chemical Society Reviews, 45, 5848–5887.
  • [6] Pampal, E. S., Stojanovska, E., Simon, B., & Kilic, A. (2015). A Review Of Nanofibrous Structures İn Lithium İon Batteries. Içinde Journal of Power Sources, 300, 199–215.
  • [7] Scrosati, B., & Garche, J. (2010). Lithium batteries : Status , prospects and future. Journal of Power Sources, 195, 2419–2430.
  • [8] Zhu, G., Wen, K., Lv, W., Zhou, X., Liang, Y., & Yang, F. (2015). Materials İnsights İnto Low-Temperature Performances Of Lithium-İon Batteries. Journal of Power Sources, 300, 29–40.
  • [9] Cheng, Q., He, W., Zhang, X., Li, M., & Song, X. (2016). Recent Advances İn Composite Membranes Modified With İnorganic Nanoparticles For High-Performance Lithium İon Batteries. Içinde RSC Advances, 6(13),10250–10265.
  • [10] Goodenough, J. B. (2014). Electrochemical Energy Storage İn A Sustainable Modern Society. Içinde Energy and Environmental Science, 7(1), 14–18.
  • [11] Waqas, M., Ali, S., Chen, D., Boateng, B., Han, Y., Zhang, M., Han, J., Goodenough, J. B., & He, W. (2019). A Robust Bi-Layer Separator With Lewis Acid-Base İnteraction For High-Rate Capacity Lithium-İon Batteries. Composites Part B: Engineering, 177, 107448.
  • [12] Rodrigues, M.-T. F., Babu, G., Gullapalli, H., Kalaga, K., Sayed, F. N., Kato, K., Joyner, J., & Ajayan, P. M. (2017). A Materials Perspective On Li-İon Batteries At Extreme Temperatures. Nature Energy, 2(8), 17108.
  • [13] Ali, S., Tan, C., Waqas, M., Lv, W., Wei, Z., Wu, S., Boateng, B., Liu, J., Ahmed, J., Xiong, J., Goodenough, J. B., & He, W. (2018). Highly Efficient PVDF-HFP/Colloidal Alumina Composite Separator for High-Temperature Lithium-Ion Batteries. Advanced Materials Interfaces, 5(5).
  • [14] https://dfe.com/applications/battery-manufacturing-tension-control/
  • [15] http://www.greenbatteries.com/li-ion-battery-faq/
  • [16] https://batteryuniversity.com/article/bu-205-types-of-lithium-ion
  • [17] Polat, B. D., & Keleş, Ö. (2012). Lityum İyon Pil Teknolojisi. Metalurji Dergileri, 162, 1–7.
  • [18] https://malzemebilimi.net/tesla-bataryalarinin-bilesenleri-ve-sagladigi-faydalar.html
  • [19] Park, J., & Park, C. (2016). Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries. Nature Publishing Group, 6, 1–8.
  • [20] Huang, J., Zhong, P., Ha, Y., Kwon, D., Crafton, M. J., Tian, Y., Balasubramanian, M., Mccloskey, B. D., Yang, W., & Ceder, G. (2021). Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nature Energy, 6, 706–714.
  • [21] Ates, M. N. (2015). High Energy Density Cathode Active Materials for Lithium-ion Batteries, Yüksek Lisans Tezi, Northeastern Universitesi. Tez Numarası 3714326.
  • [22] Moraes, A. C. M. de, Hyun, W. J., Luu, N. S., Lim, J.-M., Park, K.-Y., & Hersam, M. C. (2020). Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Applied Materials and Interfaces, 12(7), 8107–8114.
  • [23] Waqas, M., Ali, S., Lv, W., Chen, D., Boateng, B., & He, W. (2019). High-Performance PE-BN/PVDF-HFP Bilayer Separator for Lithium-Ion Batteries. Advanced Materials Interfaces, 6(1), 1801330.
  • [24] Waqas, M., Ali, S., Feng, C., Chen, D., & Han, J. (2019). Recent Development İn Separators For High-Temperature Lithium-Ion Batteries. Small, 15, 1901689.
  • [25] Kim, P. J. H., Seo, J., Fu, K., Choi, J., Liu, Z., Kwon, J., Hu, L., & Paik, U. (2017). Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Materials, 9(4).
  • [26] Baldwin, R. S., Guzik, M., & Skierski, M. (2011). Properties and Performance Attributes of Novel Co-extruded Polyolefin Battery Separator Materials Part 1 : Mechanical Properties. Materials Science, 216979.
  • [27] Ziegler, M. S., & Trancik, J. E. (2021). Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy & Environmental Science, 14(4), 1635–1651.
  • [28] Xie, M., Yin, M., Nie, G., Wang, J., Wang, C., Chao, D., & Liu, X. (2016). Poly (aryl ether ketone) Composite Membrane as a High-Performance Lithium-Ion Batteries Separator. Polymer Science, 54, 2714–2721.
  • [29] Waqas, M., Tan, C., Lv, W., Ali, S., & Boateng, B. (2018). A Highly-Efficient Composite Separator with Strong Ligand Interaction for High-Temperature Lithium-Ion Batteries. ChemElectroChem, 5, 2722–2728.
  • [30] Boateng, B., Zhu, G., Lv, W., Chen, D., Feng, C., Waqas, M., Ali, S., Wen, K., & He, W. (2018). An Efficient , Scalable Route to Robust PVDF-co-HFP / SiO2 Separator for Long-Cycle Lithium Ion Batteries. physica status solidi, 12, 1800319.
  • [31] Wang, M., Chen, X., Wang, H., Wu, H., & Huang, C. (2017). Improved Performances Of Lithium-İon Batteries With A Separator Based On İnorganic Fibers. Journal of Materials Chemistry, 5, 311–318.
  • [32] Shi, X., & Huo, X. (2020). Article Energizing Fuel Cells with an Electrically Rechargeable Liquid Fuel Energizing Fuel Cells with an Electrically Rechargeable Liquid Fuel. Cell Reports Physical Science, 1(7), 100102.
  • [33] Asghara, M. R., Anwarab, M. T., Rasheedc, T., Naveedd, A., Yana, X., & Zhanga, J. (2019). Lithium Salt Doped Poly ( Vinylidene Fluoride )/ Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery Lithium Salt Doped Poly ( Vinylidene Fluoride )/ Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery. Materials Science and Engineering, 654.
  • [34] Lim, Y. J., Kim, W., Lee, S., Kim, J., & Kim, J. (2015). Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries. Chempluschem, 80(7), 1100–1103.
  • [35] Singh, R., Janakiraman, S., Khalifa, M., Anandhan, S., & Ghosh, S. (2020). A High Thermally Stable Polyacrylonitrile ( PAN ) -Based Gel Polymer Electrolyte For Rechargeable Mg-İon Battery. Journal of Materials Science: Materials in Electronics, 31, 22912–22925.
  • [36] Fang, C., Yang, S., Zhao, X., Du, P., & Xiong, J. (2016). Electrospun Montmorillonite Modified Poly (Vinylidene Fluoride) Nanocomposite Separators For Lithium-İon Batteries. Materials Research Bulletin, 79, 1–7.
  • [37] Zhang, F., Ma, X., Cao, C., Li, J., & Zhu, Y. (2014). Poly (Vinylidene Fluoride)/Sio2 Composite Membranes Prepared By Electrospinning And Their Excellent Properties For Nonwoven Separators For Lithium-İon Batteries. Journal of Power Sources, 251, 423–431.
  • [38] Fu, Q., Lin, G., Chen, X., Yu, Z., & Yang, R. (2018). Mechanically Reinforced PVdF / PMMA / SiO2 Composite Membrane and Its Electrochemical Properties as a Separator in Lithium-Ion Batteries. energy technology, 6(1), 144–152.
  • [39] He, M., Zhang, X., Jiang, K., Wang, J., & Wang, Y. (2014). Pure Inorganic Separator for Lithium Ion Batteries. ACS Applied Materials and Interfaces, 7, 738–742.
  • [40] Huang, F., Xu, Y., Peng, B., Su, Y., Jiang, F., Hsieh, Y.-L., & Wei, Q. (2015). Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery. ACS Sustainable ustain chemistry & engineering, 3(5), 932–940.
  • [41] Jeong, H., & Lee, S. (2011). Closely packed SiO2 nanoparticles / poly ( vinylidene fluoride-hexafluoropropylene ) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 196, 6716–6722.
  • [42] Cho, J., Jung, Y., Lee, Y. S., & Kim, D. (2017). High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. Journal of Membrane Science, 535, 151–157.
  • [43] Lee, H., Alcoutlabi, M., Watson, J. V, Zhang, X., Llc, C., & Drive, S. L. (2013). Electrospun Nanofiber-Coated Separator Membranes for Lithium-Ion Rechargeable Batteries. Journal of Applied Polymer Science, 129(4), 1939–1951.
  • [44] Liang, X., Yang, Y., Jin, X., Huang, Z., & Kang, F. (2015). The high performances of SiO2 / Al2O3 -coated electrospun polyimide fi brous separator for lithium-ion battery. Journal of Membrane Science, 493, 1–7.
  • [45] Jung, Y. S., Cavanagh, A. S., Gedvilas, L., Widjonarko, N. E., Scott, I. D., Lee, S., Kim, G., George, S. M., & Dillon, A. C. (2012). Improved Functionality of Lithium-Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Advanced Energy Materials, 2(8), 1022–1027.
  • [46] Ryou, M., Lee, D. J., Lee, J., Lee, Y. M., & Park, J. (2012). Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators. Advanced Energy Materials, 2(6), 645–650.
  • [47] Shi, C., Zhang, P., Chen, L., Yang, P., & Zhao, J. (2014). Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. Journal of Power Sources, 270, 547–553.
  • [48] ÖZ, M. (2016). Hegzagonal Bor Nitrürün Açık Atmosferde Termal Davranışları. Cumhuriyet Science Journal, 37(1), 57.
  • [49] Wang, C., Hu, K., Liu, Y., Zhang, M.-R., Wang, Z., & Li, A. (2021). Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes. Materials, 14(8), 1955.
  • [50] Bhimanapati, G. R., Glavin, N. R., & Robinson, J. A. (2016). 2D Boron Nitride : Synthesis and Applications. 2D Materials, 95, 101–147.
  • [51] Auwärter, W. (2019). Surface Science Reports Hexagonal boron nitride monolayers on metal supports : Versatile templates for atoms , molecules and nanostructures. Surface Science Reports, 74(1), 1–95.
  • [52] Yurdakul, A., Subaşi, Ç., Ener, E. Ş., & Yurdakul, H. (2019). Hegzagona l Bor Nitrür Nano Levha (h -BNNS) Katkılı Termal Macun Üretimi ve Performans Ölçümü. X. Uluslararası Katılımlı Seramik Kongresi, Afyon 19.
  • [53] Aydin, H. (2018). Nanoyapılı Hegzagonal Bor Nitrür Üretimi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(2).
  • [54] Cheng, M., Ramasubramanian, A., Rasul, M. G., Jiang, Y., Yuan, Y., Foroozan, T., Deivanayagam, R., Saray, M. T., Rojaee, R., Song, B., Vitaliy Robert Yurkiv, Pan, Y., Mashayek, F., & Shahbazian-Yassar, R. (2020). Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities. Advanced Functional Materials, 31(4), 2006683.
  • [55] Sharma, Ram A. (1978). Boron Nitride Cloth Separators İn Lithium/İron-Sulfide Cells. Journal Article, 57(12), 6153044.
  • [56] Bandyopadhyay, G., Swaroop, R. B., & Battles, J. E. (1982). Ceramic Separators for Li-Al/Iron Sulfide Batteries. Journal of the Electrochemical Society, 129(10), 2187–2194.
  • [57] Hamisu, A., & Çelik, S. Ü. (2017). Poly(AN-co-PEGMA)/hBN/NaClO composite electrolytes for sodium ion battery. E-Polymers, 1722(6), 507–515.
  • [58] Xu, W., Kozawa, D., Liu, Y., Sheng, Y., Wei, K., Koman, V. B., Wang, S., Wang, X., Jiang, T., Strano, M. S., & Warner, J. H. (2018). Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS 2 : hBN : MoS2 Heterostructures for Exciton Energy Transfer. Small, 14(13), 1–10.
  • [59] Vu, M. C., Tran, T. S., Bae, Y. H., Yu, M. J., Doan, V. C., Lee, J. H., An, T. K., & Kim, S.-R. (2018). Self-Assembly of Carbon Nanotubes and Boron Nitride via Electrostatic Interaction for Epoxy Composites of High Thermal Conductivity and Electrical Resistivity. Macromolecular Research, 26, 521–528.
  • [60] Cao, D., Zhang, Q., Hafez, A. M., Jiao, Y., Ma, Y., Li, H., Cheng, Z., Niu, C., & Zhu, H. (2019). Lignin-Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression. Small Methods, 3(5), 1800539.
  • [61] Duan, G., Wang, Y., Yu, J., Zhu, J., & Hu, Z. (2019). Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride. Frontiers of Materials Science, 13(1), 64–76. [62] Moraes, A. C. M. de, Hyun, W. J., Seo, J.-W. T., Downing, J. R., Lim, J.-M., & Hersam, M. C. (2019). Ion-Conductive, Viscosity-Tunable Hexagonal Boron Nitride Nanosheet Inks. Advanced Functional Materials, 29(39), 1902245.
  • [63] Gan, W., Chen, C., Wang, Z., Pei, Y., Ping, W., Xiao, S., Dai, J., Yao, Y., He, S., Zhao, B., Das, S., Yang, B., Sunderland, P. B., & Hu, L. (2020). Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Advanced Functional Materials, 30(10), 1–9.
  • [64] Mussa, Y., Bayhan, Z., Althubaiti, N., Muhammad Arsalan, & Alsharaeh, E. (2021). Hexagonal Boron Nitride Effect On The Performance Of Graphene-Based Lithium – Sulfur Batteries And İts Stability At Elevated Temperatures. Materials Chemistry and Physics, 257, 123807.
  • [65] Zhao, B., Ma, L., Wu, K., Cao, M., & Xu, M. (2020). Asymmetric Double-Layer Composite Electrolyte With Enhanced İonic Conductivity And İnterface Stability For All-Solid-State Lithium Metal Batteries. Chinese Chemical Letters, 32(1), 125–131.
  • [66] Pietri, T., Wiley, B. J., & Simonato, J. P. (2021). Boron Nitride Nanotubes for Heat Dissipation in Polycaprolactone Composites. acs applied nano materials, 4(5), 4774–4780.
  • [67] Rajendran, S., Pilli, A., Omolere, O., Kelber, J., & Arava, L. M. R. (2021). An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches. Chemistry of Materials, 33(9), 3401–3412.
  • [68] Hong, J., Jang, A.-R., Park, W. B., Hou, B., Lee, J.-O., Sohn, K.-S., Cha, S., Lee, Y.-W., & Sohn, J. I. (2021). Supporting Information Thermodynamically and Physically Stable Dendrite-Free Li Interface with Layered Boron Nitride Separators. ACS Sustainable Chemistry Engineering, 9(11).
  • [69] Gusev, S. A., Protsenko, P. V., & Skvortsova, Z. N. (2016). The effect of the degree of ionicity of ceramic materials on their wettability by melted sodium chloride. colloid journal, 78(1), 47–51.
  • [70] Rodrigues, M. F., Kalaga, K., Gullapalli, H., Babu, G., Reddy, A. L. M., & Ajayan, P. M. (2016). Hexagonal Boron Nitride-Based Electrolyte Composite for Li-Ion Battery Operation from Room Temperature to 150 °C. Advanced Energy Materials, 6(12), 1600218.
  • [71] Cui, H. W., & Tang, X. (2014). Using polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to electrospin high surface adhesion polymer fibers. Electronic Materials Letters, 10(1), 183–189.
  • [72] Wei, L., Lihui, Z., Kun, F., Zhi, Y., Jiayu, W., Michael, M., Yonggang, Y., Hongli, Z., Bao, Y., & Liangbing, H. (2015). A Thermally Conductive Separator for Stable Li Metal Anodes. nano letter, 15(9), 6149–6154.
  • [73] Hu, J., Xie, K., Liu, X., Guo, S., Shen, C., Liu, X., Li, X., Wang, J., & Wei, B. (2017). Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochimica Acta, 227, 455–461.
  • [74] Ye, W., Sun, Q., Long, X., & Caiab, Y. (2020). Preparation And Properties Of CF–Fe3O4–BN Composite Electromagnetic Wave-Absorbing Materials. RSC Advances Open, 10, 11121–11131.
  • [75] Shi, J., Yao, Y., Xue, L., Li, K., Ning, J., Jiang, F., & Huang, F. (2020). Application Of Magnetron Sputtering To Deposit A Multicomponent Separator With Polysulfide Chemisorption And Electrode Stabilization For High-Performance Lithium Sulfur Batteries. Surface & Coatings Technology, 405, 126580.
  • [76] Liu, X., Li, L., Wei, Y., & Zheng, Y. (2015). Facile Synthesis of Boron and Nitride Doped MoS2 nanosheets as Fluorescence Probes for Ultrafast, Sensitive, and Label-free Detection of Hg2+. The Royal Society of Chemistry, 140(13), 4654–4661.
  • [77] Yang, Z., Zhou, L., Luo, W., Wan, J., Dai, J., Han, X., Fu, K., Henderson, D., Yang, B., & Hu, L. (2016). Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 8(46), 19326–19333.
  • [78] Wang, X., Yu, Z., Bian, H., Wu, W., Xiao, H., & Dai, H. (2019). Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. polymers, 11(4), 660.
  • [79] Wanga, T., Wei, C., Yan, L., Liao, Y., Wang, G., Zhao, L., Fu, M., & Ren, J. (2020). Thermally conductive , mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Composite Interfaces, 269(1).
  • [80] Mapleback, B. J., Brack, N., Thomson, L., Spencer, M. J. S., Osborne, D. A., Doshi, S., Thostenson, E. T., & Rider, A. N. (2020). Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. langmuir, 36(13), 3425–3438.
  • [81] Wu, J., Li, X., Rao, Z., Xu, X., Cheng, Z., Liao, Y., Yuan, L., Xie, X., Li, Z., & Huang, Y. (2020). Nano Energy Electrolyte With Boron Nitride Nanosheets As Leveling Agent Towards Dendrite-Free Lithium Metal Anodes. Nano Energy, 72, 104725.
  • [82] Chen, H., Xu, P., Chen, L., Li, X., & Ding, Y. (2020). Enhanced İon Transport İn PVDF-HFP Gel Polymer Electrolyte Containing PDA @ BN For Lithium İon Batteries. Materials Letters, 277, 128391.
  • [83] Nie, X., Zhao, L., Deng, S., & Chen, X. (2020). How İnterlayer Twist Angles Affect Thermal Conduction Of Double-Walle D Nanotub Es : A Non-Equilibrium Molecular Dynamics Study. International Journal of Heat and Mass Transfer, 160.
  • [84] Kaneko, K., Hori, K., & Noda, S. (2020). Nanotubes Make Battery Lighter and Safer. Carbon, 167, 596–600.
  • [85] Wong, K. C., Goh, P. S., Suzaimi, N. D., Ng, Z. C., Ismail, A. F., Jiang, X., Hu, X., & Taniguchi, T. (2021). Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride. Journal of Colloid and Interface Science, 603, 810–821.
  • [86] Jia, D., Tong, R., Ning, L., Yang, Z., Zhang, Y., Gu, W., & Liu, X. (2021). BN Nanosheets İn-Situ Mosaic On MOF-5 Derived Porous Carbon Skeleton For High-Performance Lithium-İon Batteries. Journal of Alloys and Compounds, 857(10), 15571.
  • [87] Rodriguez, J. R., Kim, P. J., Kim, K., Qi, Z., Wang, H., & Pol, V. G. (2021). Engineered Heat Dissipation And Current Distribution Boron Nitride-Graphene Layer Coated On Polypropylene Separator For High Performance Lithium Metal Battery. Journal of Colloid and Interface Science, 583, 362–370.
  • [88] Yin, X., Wang, L., Kim, Y., Ding, N., Kong, J., Safanama, D., Zheng, Y., Xu, J., Repaka, D. V. M., Hippalgaonkar, K., Lee, S. W., Adams, S., & Zheng, G. W. (2020). Thermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium – Sulfur Batteries. advaced sciece, 7(19), 2001303.
  • [89] Huanga, W., Wanga, P., Liaoc, X., Chen, Y., Borovilas, J., Jina, T., A, A. L., Chenga, Q., Zhanga, Y., A, H. Z., Chitua, A., Shanb, Z., & Yanga, Y. (2020). Mechanically-Robust Structural Lithium-Sulfur Battery With High Energy. Energy Storage Materials journal, 33, 416–422.
  • [90] Wang, Z., Liu, J., Cheng, Y., Chen, S., Yang, M., Huang, J., Wang, H., Wu, G., & Wu, H. (2018). Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement. nano materials, 8(4), 242.
  • [91] Gilshteyn, E. P., Amanbayev, D., Anisimov, A. S., Kallio, T., & Nasibulin, A. G. (2017). All-Nanotube Stretchable Supercapacitor With Low Equivalent Series Resistance. Scientific Reports, 7, 1–9.
  • [92] Ortiza, D. G., Pochat-Bohatiera, C., Gassaraa, S., Cambedouzoub, J., Bechelany, M., & Miele, P. (2018). Development of novel h-BNNS/PVA porous membranes via Pickering emulsion templating. Green Chemistry, 20(18), 319–4329.
  • [93] Shim, J., Kim, H. J., Kim, B. G., Kim, Y. S., Kim, D.-G., & Lee, J.-C. (2017). 2D Boron Nitride Nanoflakes As A Multifunctional Additive İn Gel Polymer Electrolytes For Safe, Long Cycle Life And High Rate Lithium Metal Batteries. Energy & Environmental Science, 10(9), 1911–1916.
  • [94] Wang, T., Wang, X., Pendse, A., Gao, Y., Wang, K., Bae, C., & Kim, S. (2021). High-Efficient Multifunctional Electrochemical Membrane For Lithium Polysulfide Redox Flow Batteries. Journal of Membrane Science, 636, 119539.
  • [95] Deng, D. R., Bai, C. D., Xue, F., Lei, J., Xu, P., Zheng, M. Sen, & Dong, Q. F. (2019). Multifunctional Ion-Sieve Constructed By 2D Materials As An Interlayer For Li–S Batteries. CS Appllied Materials Interfaces, 11(12), 11474–114880.
  • [96] Saw, L. H., Ye, Y., & Tay, A. A. O. (2014). Feasibility Study Of Boron Nitride Coating On Lithium-İon Battery Casing. Applied Thermal Engineering, 73(1), 154–161.
  • [97] Luo, W., Zhou, L., Yang, Z., Dai, J., Hitz, E., Kuang, Y., Han, X., Yang, B., & Hu, L. (2017). Protection Of Boron Nitride Nanosheets By Atomic Layer Deposition Toward Thermal Energy Management Applications. Nano Energy, 40, 149–154.
  • [98] Liu, Y., Qiao, Y., Zhang, Y., Yang, Z., Gao, T., Kirsch, D., Liu, B., Song, J., Yang, B., & Hu, L. (2017). 3D Printed Separator for the Thermal Management of High-performance Li Metal Anodes. Energy Storage Materials, 12, 197–203.
  • [99] Li, H., Jing, L., Tay, R. Y., Tsang, S. H., Lin, J., Zhu, M., Leong, F. N., & Teo, E. H. T. (2017). Multifunctional And Highly Compressive Cross-Linker-Free Sponge Based On Reduced Graphene Oxide And Boron Nitride Nanosheets. Chemical Engineering Journal, 328, 825–833.
  • [100] Han, R., Liu, F., Wang, X., Huang, M., Li, W., Yamauchi, Y., Xudong Sun, & Huang, Z. (2020). Functionalised Hexagonal Boron Nitride for Energy Conversion and Storage. Materials Chemistry, 8(29), 42–50.
  • [101] R. A. Sharma ve Bradley T.G., “On The Stability Of Boron Nitride With Lithium Alloy Electrodes İn Molten Salt Cells”, J. Electrochem. Soc., c. 128, sayı 9, ss. 1835–1840, 1981.
  • [102] Mortazavi, B., Yang, H., Mohebbi, F., & Cuniberti, G. (2017). Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries : A multiscale investigation. Applied Physics, 202, 323–334.
  • [103] Swaroop, R. B., Battles, J. E., & Hamilton, R. S. (1980). Development and Evaluatıon of Bn Felt As Separator Materıal. Technical Papers, Regional Technical Conference - Society of Plastics Engineers, 1, 67–71.
  • [104] Swaroop, R. B., & Battles, J. E. (1981). Development of BN Felt Separator for Li‐Al/MSx Battery. Journal of the Electrochemical Society, 128(9), 1873–1877.
  • [105] Sousa, R. E., Nunes-pereira, J., Costa, C. M., Silva, M. M., Lanceros-méndez, S., Hassoun, J., Scrosati, B., & Appetecchi, G. B. (2014). Influence of the porosity degree of poly(vinylidene fluoride-co- hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources journal, 263, 29–36.

Lityum iyon pilleri ayırıcılarında Hekzagonal Bor Nitrür kullanımı ve Gelişmeler

Year 2022, Volume: 7 Issue: 1, 440 - 452, 29.03.2022
https://doi.org/10.30728/boron.1008704

Abstract

Günümüz dünyasında sürekli artan enerji talebi ve karbon salınımının azaltılması zorunluluğu çeşitli zorluklar yaratmaktadır. Bu diğer enerji türlerine yani yenilenebilir enerji kaynaklarına yoğunlaşmayı ve etkin enerji depolamayı gerektirir. Üretilen enerji için yüksek güç yoğunluğu, uzun ömürlü ve uygun maliyetli depolama cihazları gerekmektedir ve bu ihtiyaca pil teknolojisi bir çözümdür. Lityum iyon pilleri (LİP) taşınabilir elektronik cihazlar için en popüler şarj edilebilir pillerdir. Yüksek elektrik yoğunluğa sahip olması aynı zamanda yüksek hızlı şarj özelliği, yavaş deşarj ve uzun ömürlü olması avantajlarındandır. LİP, NiCd pillerden daha pahalıdır, ancak daha küçük ve daha hafif olmakla birlikte daha geniş bir sıcaklık aralığında çalışır. Bu özellikler sayesinde LİP çok alanda kullanılmaya başlamıştır. LİP en büyük dezavantajı yüksek sıcaklıklarda bozulmasıdır. Bu sorunda pilin bileşenlerinin etkisi büyüktür. Ayırıcılar pillerin içindeki elektrokimyasal reaksiyona doğrudan dahil olmayan, elektrotlar arasındaki teması keserek dahili kısa devreleri önleyen, sıvı elektrolitleri depolayan, şarj-deşarj işlemleri sırasında iyonların verimli bir şekilde aktarılmasını sağlayan ve yüksek sıcaklıklarda LİP'lerin kullanımını mümkün kılan en önemli bileşenlerden biridir. Bu derleme ile de hekzagonal bor nitrürün LİP’lerde kullanımına ilişkin kapsamlı bir genel bakış sağlamaya çalışıyoruz.

References

  • Referans 1 Aydın, H., Çelik, S. Ü., & Bozkurt, A. (2017). Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers For Lithium İon Battery Application. Solid State Ionics, 309, 71–76.
  • Referans2 Rahman, M. M., Mateti, S., Cai, Q., Sultana, I., Fan, Y., Wang, X., Hou, C., & Chen, Y. (2019). High Temperature and High Rate Lithium-İon Batteries With Boron Nitride Nanotubes Coated Polypropylene Separators. Energy Storage Materials, 19, 352–359.
  • [3] Di Lecce, D., Verrelli, R., & Hassoun, J. (2017). Lithium-İon Batteries For Sustainable Energy Storage: Recent Advances Towards New Cell Configurations. Içinde Green Chemistry, 19(15),3442–3467.
  • [4] Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. 30, 1800561.
  • [5] Grinstaff, M., Mark, S., & Grinstaff, W. (2016). Featuring work from the research group of Professor As featured in : High temperature electrical energy storage : advances , challenges , and frontiers. Chemical Society Reviews, 45, 5848–5887.
  • [6] Pampal, E. S., Stojanovska, E., Simon, B., & Kilic, A. (2015). A Review Of Nanofibrous Structures İn Lithium İon Batteries. Içinde Journal of Power Sources, 300, 199–215.
  • [7] Scrosati, B., & Garche, J. (2010). Lithium batteries : Status , prospects and future. Journal of Power Sources, 195, 2419–2430.
  • [8] Zhu, G., Wen, K., Lv, W., Zhou, X., Liang, Y., & Yang, F. (2015). Materials İnsights İnto Low-Temperature Performances Of Lithium-İon Batteries. Journal of Power Sources, 300, 29–40.
  • [9] Cheng, Q., He, W., Zhang, X., Li, M., & Song, X. (2016). Recent Advances İn Composite Membranes Modified With İnorganic Nanoparticles For High-Performance Lithium İon Batteries. Içinde RSC Advances, 6(13),10250–10265.
  • [10] Goodenough, J. B. (2014). Electrochemical Energy Storage İn A Sustainable Modern Society. Içinde Energy and Environmental Science, 7(1), 14–18.
  • [11] Waqas, M., Ali, S., Chen, D., Boateng, B., Han, Y., Zhang, M., Han, J., Goodenough, J. B., & He, W. (2019). A Robust Bi-Layer Separator With Lewis Acid-Base İnteraction For High-Rate Capacity Lithium-İon Batteries. Composites Part B: Engineering, 177, 107448.
  • [12] Rodrigues, M.-T. F., Babu, G., Gullapalli, H., Kalaga, K., Sayed, F. N., Kato, K., Joyner, J., & Ajayan, P. M. (2017). A Materials Perspective On Li-İon Batteries At Extreme Temperatures. Nature Energy, 2(8), 17108.
  • [13] Ali, S., Tan, C., Waqas, M., Lv, W., Wei, Z., Wu, S., Boateng, B., Liu, J., Ahmed, J., Xiong, J., Goodenough, J. B., & He, W. (2018). Highly Efficient PVDF-HFP/Colloidal Alumina Composite Separator for High-Temperature Lithium-Ion Batteries. Advanced Materials Interfaces, 5(5).
  • [14] https://dfe.com/applications/battery-manufacturing-tension-control/
  • [15] http://www.greenbatteries.com/li-ion-battery-faq/
  • [16] https://batteryuniversity.com/article/bu-205-types-of-lithium-ion
  • [17] Polat, B. D., & Keleş, Ö. (2012). Lityum İyon Pil Teknolojisi. Metalurji Dergileri, 162, 1–7.
  • [18] https://malzemebilimi.net/tesla-bataryalarinin-bilesenleri-ve-sagladigi-faydalar.html
  • [19] Park, J., & Park, C. (2016). Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries. Nature Publishing Group, 6, 1–8.
  • [20] Huang, J., Zhong, P., Ha, Y., Kwon, D., Crafton, M. J., Tian, Y., Balasubramanian, M., Mccloskey, B. D., Yang, W., & Ceder, G. (2021). Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nature Energy, 6, 706–714.
  • [21] Ates, M. N. (2015). High Energy Density Cathode Active Materials for Lithium-ion Batteries, Yüksek Lisans Tezi, Northeastern Universitesi. Tez Numarası 3714326.
  • [22] Moraes, A. C. M. de, Hyun, W. J., Luu, N. S., Lim, J.-M., Park, K.-Y., & Hersam, M. C. (2020). Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Applied Materials and Interfaces, 12(7), 8107–8114.
  • [23] Waqas, M., Ali, S., Lv, W., Chen, D., Boateng, B., & He, W. (2019). High-Performance PE-BN/PVDF-HFP Bilayer Separator for Lithium-Ion Batteries. Advanced Materials Interfaces, 6(1), 1801330.
  • [24] Waqas, M., Ali, S., Feng, C., Chen, D., & Han, J. (2019). Recent Development İn Separators For High-Temperature Lithium-Ion Batteries. Small, 15, 1901689.
  • [25] Kim, P. J. H., Seo, J., Fu, K., Choi, J., Liu, Z., Kwon, J., Hu, L., & Paik, U. (2017). Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Materials, 9(4).
  • [26] Baldwin, R. S., Guzik, M., & Skierski, M. (2011). Properties and Performance Attributes of Novel Co-extruded Polyolefin Battery Separator Materials Part 1 : Mechanical Properties. Materials Science, 216979.
  • [27] Ziegler, M. S., & Trancik, J. E. (2021). Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy & Environmental Science, 14(4), 1635–1651.
  • [28] Xie, M., Yin, M., Nie, G., Wang, J., Wang, C., Chao, D., & Liu, X. (2016). Poly (aryl ether ketone) Composite Membrane as a High-Performance Lithium-Ion Batteries Separator. Polymer Science, 54, 2714–2721.
  • [29] Waqas, M., Tan, C., Lv, W., Ali, S., & Boateng, B. (2018). A Highly-Efficient Composite Separator with Strong Ligand Interaction for High-Temperature Lithium-Ion Batteries. ChemElectroChem, 5, 2722–2728.
  • [30] Boateng, B., Zhu, G., Lv, W., Chen, D., Feng, C., Waqas, M., Ali, S., Wen, K., & He, W. (2018). An Efficient , Scalable Route to Robust PVDF-co-HFP / SiO2 Separator for Long-Cycle Lithium Ion Batteries. physica status solidi, 12, 1800319.
  • [31] Wang, M., Chen, X., Wang, H., Wu, H., & Huang, C. (2017). Improved Performances Of Lithium-İon Batteries With A Separator Based On İnorganic Fibers. Journal of Materials Chemistry, 5, 311–318.
  • [32] Shi, X., & Huo, X. (2020). Article Energizing Fuel Cells with an Electrically Rechargeable Liquid Fuel Energizing Fuel Cells with an Electrically Rechargeable Liquid Fuel. Cell Reports Physical Science, 1(7), 100102.
  • [33] Asghara, M. R., Anwarab, M. T., Rasheedc, T., Naveedd, A., Yana, X., & Zhanga, J. (2019). Lithium Salt Doped Poly ( Vinylidene Fluoride )/ Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery Lithium Salt Doped Poly ( Vinylidene Fluoride )/ Cellulose Acetate Composite Gel Electrolyte Membrane for Lithium Ion Battery. Materials Science and Engineering, 654.
  • [34] Lim, Y. J., Kim, W., Lee, S., Kim, J., & Kim, J. (2015). Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries. Chempluschem, 80(7), 1100–1103.
  • [35] Singh, R., Janakiraman, S., Khalifa, M., Anandhan, S., & Ghosh, S. (2020). A High Thermally Stable Polyacrylonitrile ( PAN ) -Based Gel Polymer Electrolyte For Rechargeable Mg-İon Battery. Journal of Materials Science: Materials in Electronics, 31, 22912–22925.
  • [36] Fang, C., Yang, S., Zhao, X., Du, P., & Xiong, J. (2016). Electrospun Montmorillonite Modified Poly (Vinylidene Fluoride) Nanocomposite Separators For Lithium-İon Batteries. Materials Research Bulletin, 79, 1–7.
  • [37] Zhang, F., Ma, X., Cao, C., Li, J., & Zhu, Y. (2014). Poly (Vinylidene Fluoride)/Sio2 Composite Membranes Prepared By Electrospinning And Their Excellent Properties For Nonwoven Separators For Lithium-İon Batteries. Journal of Power Sources, 251, 423–431.
  • [38] Fu, Q., Lin, G., Chen, X., Yu, Z., & Yang, R. (2018). Mechanically Reinforced PVdF / PMMA / SiO2 Composite Membrane and Its Electrochemical Properties as a Separator in Lithium-Ion Batteries. energy technology, 6(1), 144–152.
  • [39] He, M., Zhang, X., Jiang, K., Wang, J., & Wang, Y. (2014). Pure Inorganic Separator for Lithium Ion Batteries. ACS Applied Materials and Interfaces, 7, 738–742.
  • [40] Huang, F., Xu, Y., Peng, B., Su, Y., Jiang, F., Hsieh, Y.-L., & Wei, Q. (2015). Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery. ACS Sustainable ustain chemistry & engineering, 3(5), 932–940.
  • [41] Jeong, H., & Lee, S. (2011). Closely packed SiO2 nanoparticles / poly ( vinylidene fluoride-hexafluoropropylene ) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 196, 6716–6722.
  • [42] Cho, J., Jung, Y., Lee, Y. S., & Kim, D. (2017). High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. Journal of Membrane Science, 535, 151–157.
  • [43] Lee, H., Alcoutlabi, M., Watson, J. V, Zhang, X., Llc, C., & Drive, S. L. (2013). Electrospun Nanofiber-Coated Separator Membranes for Lithium-Ion Rechargeable Batteries. Journal of Applied Polymer Science, 129(4), 1939–1951.
  • [44] Liang, X., Yang, Y., Jin, X., Huang, Z., & Kang, F. (2015). The high performances of SiO2 / Al2O3 -coated electrospun polyimide fi brous separator for lithium-ion battery. Journal of Membrane Science, 493, 1–7.
  • [45] Jung, Y. S., Cavanagh, A. S., Gedvilas, L., Widjonarko, N. E., Scott, I. D., Lee, S., Kim, G., George, S. M., & Dillon, A. C. (2012). Improved Functionality of Lithium-Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Advanced Energy Materials, 2(8), 1022–1027.
  • [46] Ryou, M., Lee, D. J., Lee, J., Lee, Y. M., & Park, J. (2012). Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators. Advanced Energy Materials, 2(6), 645–650.
  • [47] Shi, C., Zhang, P., Chen, L., Yang, P., & Zhao, J. (2014). Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. Journal of Power Sources, 270, 547–553.
  • [48] ÖZ, M. (2016). Hegzagonal Bor Nitrürün Açık Atmosferde Termal Davranışları. Cumhuriyet Science Journal, 37(1), 57.
  • [49] Wang, C., Hu, K., Liu, Y., Zhang, M.-R., Wang, Z., & Li, A. (2021). Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes. Materials, 14(8), 1955.
  • [50] Bhimanapati, G. R., Glavin, N. R., & Robinson, J. A. (2016). 2D Boron Nitride : Synthesis and Applications. 2D Materials, 95, 101–147.
  • [51] Auwärter, W. (2019). Surface Science Reports Hexagonal boron nitride monolayers on metal supports : Versatile templates for atoms , molecules and nanostructures. Surface Science Reports, 74(1), 1–95.
  • [52] Yurdakul, A., Subaşi, Ç., Ener, E. Ş., & Yurdakul, H. (2019). Hegzagona l Bor Nitrür Nano Levha (h -BNNS) Katkılı Termal Macun Üretimi ve Performans Ölçümü. X. Uluslararası Katılımlı Seramik Kongresi, Afyon 19.
  • [53] Aydin, H. (2018). Nanoyapılı Hegzagonal Bor Nitrür Üretimi ve Karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(2).
  • [54] Cheng, M., Ramasubramanian, A., Rasul, M. G., Jiang, Y., Yuan, Y., Foroozan, T., Deivanayagam, R., Saray, M. T., Rojaee, R., Song, B., Vitaliy Robert Yurkiv, Pan, Y., Mashayek, F., & Shahbazian-Yassar, R. (2020). Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities. Advanced Functional Materials, 31(4), 2006683.
  • [55] Sharma, Ram A. (1978). Boron Nitride Cloth Separators İn Lithium/İron-Sulfide Cells. Journal Article, 57(12), 6153044.
  • [56] Bandyopadhyay, G., Swaroop, R. B., & Battles, J. E. (1982). Ceramic Separators for Li-Al/Iron Sulfide Batteries. Journal of the Electrochemical Society, 129(10), 2187–2194.
  • [57] Hamisu, A., & Çelik, S. Ü. (2017). Poly(AN-co-PEGMA)/hBN/NaClO composite electrolytes for sodium ion battery. E-Polymers, 1722(6), 507–515.
  • [58] Xu, W., Kozawa, D., Liu, Y., Sheng, Y., Wei, K., Koman, V. B., Wang, S., Wang, X., Jiang, T., Strano, M. S., & Warner, J. H. (2018). Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS 2 : hBN : MoS2 Heterostructures for Exciton Energy Transfer. Small, 14(13), 1–10.
  • [59] Vu, M. C., Tran, T. S., Bae, Y. H., Yu, M. J., Doan, V. C., Lee, J. H., An, T. K., & Kim, S.-R. (2018). Self-Assembly of Carbon Nanotubes and Boron Nitride via Electrostatic Interaction for Epoxy Composites of High Thermal Conductivity and Electrical Resistivity. Macromolecular Research, 26, 521–528.
  • [60] Cao, D., Zhang, Q., Hafez, A. M., Jiao, Y., Ma, Y., Li, H., Cheng, Z., Niu, C., & Zhu, H. (2019). Lignin-Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression. Small Methods, 3(5), 1800539.
  • [61] Duan, G., Wang, Y., Yu, J., Zhu, J., & Hu, Z. (2019). Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride. Frontiers of Materials Science, 13(1), 64–76. [62] Moraes, A. C. M. de, Hyun, W. J., Seo, J.-W. T., Downing, J. R., Lim, J.-M., & Hersam, M. C. (2019). Ion-Conductive, Viscosity-Tunable Hexagonal Boron Nitride Nanosheet Inks. Advanced Functional Materials, 29(39), 1902245.
  • [63] Gan, W., Chen, C., Wang, Z., Pei, Y., Ping, W., Xiao, S., Dai, J., Yao, Y., He, S., Zhao, B., Das, S., Yang, B., Sunderland, P. B., & Hu, L. (2020). Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Advanced Functional Materials, 30(10), 1–9.
  • [64] Mussa, Y., Bayhan, Z., Althubaiti, N., Muhammad Arsalan, & Alsharaeh, E. (2021). Hexagonal Boron Nitride Effect On The Performance Of Graphene-Based Lithium – Sulfur Batteries And İts Stability At Elevated Temperatures. Materials Chemistry and Physics, 257, 123807.
  • [65] Zhao, B., Ma, L., Wu, K., Cao, M., & Xu, M. (2020). Asymmetric Double-Layer Composite Electrolyte With Enhanced İonic Conductivity And İnterface Stability For All-Solid-State Lithium Metal Batteries. Chinese Chemical Letters, 32(1), 125–131.
  • [66] Pietri, T., Wiley, B. J., & Simonato, J. P. (2021). Boron Nitride Nanotubes for Heat Dissipation in Polycaprolactone Composites. acs applied nano materials, 4(5), 4774–4780.
  • [67] Rajendran, S., Pilli, A., Omolere, O., Kelber, J., & Arava, L. M. R. (2021). An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches. Chemistry of Materials, 33(9), 3401–3412.
  • [68] Hong, J., Jang, A.-R., Park, W. B., Hou, B., Lee, J.-O., Sohn, K.-S., Cha, S., Lee, Y.-W., & Sohn, J. I. (2021). Supporting Information Thermodynamically and Physically Stable Dendrite-Free Li Interface with Layered Boron Nitride Separators. ACS Sustainable Chemistry Engineering, 9(11).
  • [69] Gusev, S. A., Protsenko, P. V., & Skvortsova, Z. N. (2016). The effect of the degree of ionicity of ceramic materials on their wettability by melted sodium chloride. colloid journal, 78(1), 47–51.
  • [70] Rodrigues, M. F., Kalaga, K., Gullapalli, H., Babu, G., Reddy, A. L. M., & Ajayan, P. M. (2016). Hexagonal Boron Nitride-Based Electrolyte Composite for Li-Ion Battery Operation from Room Temperature to 150 °C. Advanced Energy Materials, 6(12), 1600218.
  • [71] Cui, H. W., & Tang, X. (2014). Using polyurethane, ethylene-vinyl acetate hotmelt, and nano hexagonal boron nitride particles to electrospin high surface adhesion polymer fibers. Electronic Materials Letters, 10(1), 183–189.
  • [72] Wei, L., Lihui, Z., Kun, F., Zhi, Y., Jiayu, W., Michael, M., Yonggang, Y., Hongli, Z., Bao, Y., & Liangbing, H. (2015). A Thermally Conductive Separator for Stable Li Metal Anodes. nano letter, 15(9), 6149–6154.
  • [73] Hu, J., Xie, K., Liu, X., Guo, S., Shen, C., Liu, X., Li, X., Wang, J., & Wei, B. (2017). Dramatically Enhanced Ion Conductivity of Gel Polymer Electrolyte for Supercapacitor via h-BN Nanosheets Doping. Electrochimica Acta, 227, 455–461.
  • [74] Ye, W., Sun, Q., Long, X., & Caiab, Y. (2020). Preparation And Properties Of CF–Fe3O4–BN Composite Electromagnetic Wave-Absorbing Materials. RSC Advances Open, 10, 11121–11131.
  • [75] Shi, J., Yao, Y., Xue, L., Li, K., Ning, J., Jiang, F., & Huang, F. (2020). Application Of Magnetron Sputtering To Deposit A Multicomponent Separator With Polysulfide Chemisorption And Electrode Stabilization For High-Performance Lithium Sulfur Batteries. Surface & Coatings Technology, 405, 126580.
  • [76] Liu, X., Li, L., Wei, Y., & Zheng, Y. (2015). Facile Synthesis of Boron and Nitride Doped MoS2 nanosheets as Fluorescence Probes for Ultrafast, Sensitive, and Label-free Detection of Hg2+. The Royal Society of Chemistry, 140(13), 4654–4661.
  • [77] Yang, Z., Zhou, L., Luo, W., Wan, J., Dai, J., Han, X., Fu, K., Henderson, D., Yang, B., & Hu, L. (2016). Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 8(46), 19326–19333.
  • [78] Wang, X., Yu, Z., Bian, H., Wu, W., Xiao, H., & Dai, H. (2019). Thermally Conductive and Electrical Insulation BNNS/CNF Aerogel Nano-Paper. polymers, 11(4), 660.
  • [79] Wanga, T., Wei, C., Yan, L., Liao, Y., Wang, G., Zhao, L., Fu, M., & Ren, J. (2020). Thermally conductive , mechanically strong dielectric film made from aramid nanofiber and edge-hydroxylated boron nitride nanosheet for thermal management applications. Composite Interfaces, 269(1).
  • [80] Mapleback, B. J., Brack, N., Thomson, L., Spencer, M. J. S., Osborne, D. A., Doshi, S., Thostenson, E. T., & Rider, A. N. (2020). Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. langmuir, 36(13), 3425–3438.
  • [81] Wu, J., Li, X., Rao, Z., Xu, X., Cheng, Z., Liao, Y., Yuan, L., Xie, X., Li, Z., & Huang, Y. (2020). Nano Energy Electrolyte With Boron Nitride Nanosheets As Leveling Agent Towards Dendrite-Free Lithium Metal Anodes. Nano Energy, 72, 104725.
  • [82] Chen, H., Xu, P., Chen, L., Li, X., & Ding, Y. (2020). Enhanced İon Transport İn PVDF-HFP Gel Polymer Electrolyte Containing PDA @ BN For Lithium İon Batteries. Materials Letters, 277, 128391.
  • [83] Nie, X., Zhao, L., Deng, S., & Chen, X. (2020). How İnterlayer Twist Angles Affect Thermal Conduction Of Double-Walle D Nanotub Es : A Non-Equilibrium Molecular Dynamics Study. International Journal of Heat and Mass Transfer, 160.
  • [84] Kaneko, K., Hori, K., & Noda, S. (2020). Nanotubes Make Battery Lighter and Safer. Carbon, 167, 596–600.
  • [85] Wong, K. C., Goh, P. S., Suzaimi, N. D., Ng, Z. C., Ismail, A. F., Jiang, X., Hu, X., & Taniguchi, T. (2021). Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride. Journal of Colloid and Interface Science, 603, 810–821.
  • [86] Jia, D., Tong, R., Ning, L., Yang, Z., Zhang, Y., Gu, W., & Liu, X. (2021). BN Nanosheets İn-Situ Mosaic On MOF-5 Derived Porous Carbon Skeleton For High-Performance Lithium-İon Batteries. Journal of Alloys and Compounds, 857(10), 15571.
  • [87] Rodriguez, J. R., Kim, P. J., Kim, K., Qi, Z., Wang, H., & Pol, V. G. (2021). Engineered Heat Dissipation And Current Distribution Boron Nitride-Graphene Layer Coated On Polypropylene Separator For High Performance Lithium Metal Battery. Journal of Colloid and Interface Science, 583, 362–370.
  • [88] Yin, X., Wang, L., Kim, Y., Ding, N., Kong, J., Safanama, D., Zheng, Y., Xu, J., Repaka, D. V. M., Hippalgaonkar, K., Lee, S. W., Adams, S., & Zheng, G. W. (2020). Thermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium – Sulfur Batteries. advaced sciece, 7(19), 2001303.
  • [89] Huanga, W., Wanga, P., Liaoc, X., Chen, Y., Borovilas, J., Jina, T., A, A. L., Chenga, Q., Zhanga, Y., A, H. Z., Chitua, A., Shanb, Z., & Yanga, Y. (2020). Mechanically-Robust Structural Lithium-Sulfur Battery With High Energy. Energy Storage Materials journal, 33, 416–422.
  • [90] Wang, Z., Liu, J., Cheng, Y., Chen, S., Yang, M., Huang, J., Wang, H., Wu, G., & Wu, H. (2018). Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement. nano materials, 8(4), 242.
  • [91] Gilshteyn, E. P., Amanbayev, D., Anisimov, A. S., Kallio, T., & Nasibulin, A. G. (2017). All-Nanotube Stretchable Supercapacitor With Low Equivalent Series Resistance. Scientific Reports, 7, 1–9.
  • [92] Ortiza, D. G., Pochat-Bohatiera, C., Gassaraa, S., Cambedouzoub, J., Bechelany, M., & Miele, P. (2018). Development of novel h-BNNS/PVA porous membranes via Pickering emulsion templating. Green Chemistry, 20(18), 319–4329.
  • [93] Shim, J., Kim, H. J., Kim, B. G., Kim, Y. S., Kim, D.-G., & Lee, J.-C. (2017). 2D Boron Nitride Nanoflakes As A Multifunctional Additive İn Gel Polymer Electrolytes For Safe, Long Cycle Life And High Rate Lithium Metal Batteries. Energy & Environmental Science, 10(9), 1911–1916.
  • [94] Wang, T., Wang, X., Pendse, A., Gao, Y., Wang, K., Bae, C., & Kim, S. (2021). High-Efficient Multifunctional Electrochemical Membrane For Lithium Polysulfide Redox Flow Batteries. Journal of Membrane Science, 636, 119539.
  • [95] Deng, D. R., Bai, C. D., Xue, F., Lei, J., Xu, P., Zheng, M. Sen, & Dong, Q. F. (2019). Multifunctional Ion-Sieve Constructed By 2D Materials As An Interlayer For Li–S Batteries. CS Appllied Materials Interfaces, 11(12), 11474–114880.
  • [96] Saw, L. H., Ye, Y., & Tay, A. A. O. (2014). Feasibility Study Of Boron Nitride Coating On Lithium-İon Battery Casing. Applied Thermal Engineering, 73(1), 154–161.
  • [97] Luo, W., Zhou, L., Yang, Z., Dai, J., Hitz, E., Kuang, Y., Han, X., Yang, B., & Hu, L. (2017). Protection Of Boron Nitride Nanosheets By Atomic Layer Deposition Toward Thermal Energy Management Applications. Nano Energy, 40, 149–154.
  • [98] Liu, Y., Qiao, Y., Zhang, Y., Yang, Z., Gao, T., Kirsch, D., Liu, B., Song, J., Yang, B., & Hu, L. (2017). 3D Printed Separator for the Thermal Management of High-performance Li Metal Anodes. Energy Storage Materials, 12, 197–203.
  • [99] Li, H., Jing, L., Tay, R. Y., Tsang, S. H., Lin, J., Zhu, M., Leong, F. N., & Teo, E. H. T. (2017). Multifunctional And Highly Compressive Cross-Linker-Free Sponge Based On Reduced Graphene Oxide And Boron Nitride Nanosheets. Chemical Engineering Journal, 328, 825–833.
  • [100] Han, R., Liu, F., Wang, X., Huang, M., Li, W., Yamauchi, Y., Xudong Sun, & Huang, Z. (2020). Functionalised Hexagonal Boron Nitride for Energy Conversion and Storage. Materials Chemistry, 8(29), 42–50.
  • [101] R. A. Sharma ve Bradley T.G., “On The Stability Of Boron Nitride With Lithium Alloy Electrodes İn Molten Salt Cells”, J. Electrochem. Soc., c. 128, sayı 9, ss. 1835–1840, 1981.
  • [102] Mortazavi, B., Yang, H., Mohebbi, F., & Cuniberti, G. (2017). Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries : A multiscale investigation. Applied Physics, 202, 323–334.
  • [103] Swaroop, R. B., Battles, J. E., & Hamilton, R. S. (1980). Development and Evaluatıon of Bn Felt As Separator Materıal. Technical Papers, Regional Technical Conference - Society of Plastics Engineers, 1, 67–71.
  • [104] Swaroop, R. B., & Battles, J. E. (1981). Development of BN Felt Separator for Li‐Al/MSx Battery. Journal of the Electrochemical Society, 128(9), 1873–1877.
  • [105] Sousa, R. E., Nunes-pereira, J., Costa, C. M., Silva, M. M., Lanceros-méndez, S., Hassoun, J., Scrosati, B., & Appetecchi, G. B. (2014). Influence of the porosity degree of poly(vinylidene fluoride-co- hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources journal, 263, 29–36.
There are 104 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Benan Elmusa 0000-0002-1722-2561

Nuran Ay 0000-0002-2228-9904

Publication Date March 29, 2022
Acceptance Date January 5, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Elmusa, B., & Ay, N. (2022). Lityum iyon pilleri ayırıcılarında Hekzagonal Bor Nitrür kullanımı ve Gelişmeler. Journal of Boron, 7(1), 440-452. https://doi.org/10.30728/boron.1008704