Research Article
BibTex RIS Cite

Borik asidin C6 glioma hücrelerinde glutamat eksitotoksisitesine karşı koruyucu etkinliğinde oksidatif stresin rolü

Year 2025, Volume: 10 Issue: 1, 1 - 9, 01.04.2025

Abstract

Bu çalışma, borik asidin (BA) glutamat ile indüklenen eksitotoksisiteye karşı glial hücrelerde meydana gelen oksidan/antioksidan sistem değişikliklerini biyokimyasal olarak incelemek amacıyla tasarlanmıştır. Bu çalışmada C6 glial hücreleri kullanılmıştır. Hücreler kontrol, glutamat (10mM), glutamat+BA(0,23; 0,46; 0,93; 1,87 ve 3,75 μg/mL) ve BA (0,23; 0,46; 0,93; 1,87 ve 3,75 μg/ml) olmak üzere 4 gruba ayrılmıştır. Kontrol grubuna herhangi bir tedavi yapılmamıştır. Glutamat grubundaki hücreler 24 saat boyunca 10 mM glutamat ile muamele edilmiştir. BA ise glutamat eklenmeden 1 saat önce verildi ve 24 saat boyunca inkübe edilmiştir. Hücre canlılığı XTT testi ile ölçülmüştür. Biyokimyasal analizler için ticari kitler kullanılmıştır. Anlamlılık 0.05’ten küçük olarak kabul edilmiştir. Biyokimyasal analiz ile glutamat grubunda malondialdehit (MDA), nitrik oksit (NO), indüklenmiş nitrik oksit sentaz (iNOS), nöronal nitrik oksit sentaz (nNOS) ve toplam oksidant (TOS) seviyelerinin kontrol grubuna göre arttığı (p<0,05), BA ön tedavisi ile glutamat grubuna göre istatistiksel olarak azaldığı tespit edilmiştir (p<0,05). SOD ve TAS seviyesi glutamat grubunda azalırken BA ön tedavisi ile artmıştır (p<0,05). BA, glial hücreler üzerinde glutamat maruziyetine karşı koruyucu etkiler göstermiştir. Bu nöroprotektif etkiyi antioksidan savunma mekanizmasını artırarak, oksidatif ve nitrozatif stresi azaltarak oluşturmuştur.

Supporting Institution

TUBİTAK

Project Number

1919B012004287

References

  • [1] Wang, Y., & Qin, Z. (2010). Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis, 15(11), 1382-1402. https://doi.org/10.1007/s10495-010-0481-0
  • [2] Daniele, S. G., Trummer, G., Hossmann, K. A., Vrselja, Z., Benk, C., Gobeske, K. T., … & Sestan, N. (2021). Brain vulnerability and viability after ischaemia. Nature Reviews Neuroscience, 22(9), 553-572. https://doi.org/10.1038/s41583-021-00488-y
  • [3] Dong, X., Wang, Y., & Qin, Z. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 30(4), 379-387. https://doi.org/10.1038/aps.2009.24
  • [4] Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., & Vavilis, T. D. (2015). Researching glutamate-induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Frontiers in Cellular Neuroscience, 9. https://doi.org/10.3389/fncel.2015.00091
  • [5] Felek, H., Çatal, T., Yulak, F., Filiz, A. K., & Karabulut, S. (2024). The effect of myostatin on glutamate excitotoxicity induced in SH-SY5Y cell line. Health Sciences Student Journal, 4(1), 1-6. Erişim Adresi: https://ojs.healthssj.com/index.php/panel/article/view/15
  • [6] Barbeito, L. H., Pehar, M., Cassina, P., Vargas, M. R., Peluffo, H., Viera, L., … & Beckman, J. S. (2004). A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Research Reviews, 47(1-3), 263-274. https://doi.org/10.1016/j.brainresrev.2004.05.003
  • [7] Hertz, L. (2006). Glutamate, a neurotransmitter-and so much more. Neurochemistry International, 48(6-7), 416-425. https://doi.org/10.1016/j.neuint.2005.12.021
  • [8] Pope, S. A., Milton, R., & Heales, S. J. (2008). Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochemical Research, 33(7), 1410-1418. https://doi.org/10.1007/s11064-008-9602-3
  • [9] Quincozes-Santos, A., & Gottfried, C. (2011). Resveratrol modulates astroglial functions: Neuroprotective hypothesis. Annals of the New York Academy of Sciences, 1215(1), 72-78. https://doi.org/10.1111/j.1749-6632.2010.05857.x
  • [10] Benda, P., Lightbody, J., Sato, G., Levine, L., & Sweet, W. (1968). Differentiated rat glial cell strain in tissue culture. Science, 161(3839), 370-371. https://doi.org/10.1126/science.161.3839.370
  • [11] Gutteridge, J. M. C., & Halliwell, B. (2010). Antioxidants: Molecules, medicines, and myths. Biochemical and Biophysical Research Communications, 393(4), 561-564. https://doi.org/10.1016/j.bbrc.2010.02.071
  • [12] Karademir M., Öztürk, A., Yulak, F., Özkaraca, M., & Taskiran, A. S. (2024). Unveiling the protective potential of sugammadex against ptz-induced epileptic seizures in mice: A comprehensive study on oxidative stress, apoptosis, and autophagy. Neurochemical Journal, 18(2), 338-347. https://doi.org/10.1134/s1819712424020181
  • [13] Azimullah, S., Meeran, M. F., Ayoob, K., Arunachalam, S., Ojha, S., & Beiram, R. (2023). Tannic acid mitigates rotenone-induced dopaminergic neurodegeneration by inhibiting inflammation, oxidative stress, apoptosis, and glutamate toxicity in rats. International Journal of Molecular Sciences, 24(12), 9876. https://doi.org/10.3390/ijms24129876
  • [14] Brocardo, P. S., Gil-Mohapel, J., & Christie, B. R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Research Reviews, 67(1-2), 209-225. https://doi.org/10.1016/j.brainresrev.2011.02.001
  • [15] Javed, H., Azimullah, S., Haque, M. E., & Ojha, S. K. (2016). Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of parkinson’s disease. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00321
  • [16] Ergül, M., & Taşkıran, A. Ş. (2021). Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress. Chemical and Pharmaceutical Bulletin, 69(9), 832-839. https://doi.org/10.1248/cpb.c21-00169
  • [17] Salim, S. (2017). Oxidative stress and the central nervous system. The Journal of Pharmacology and Experimental Therapeutics, 360(1), 201-205. https://doi.org/10.1124/jpet.116.237503
  • [18] Nielsen, F. H. (2008). Is boron nutritionally relevant? Nutrition Reviews, 66(4), 183-191. https://doi.org/10.1111/j.1753-4887.2008.00023.x
  • [19] Qiu, L., Zhu, C.-L., Wang, X.-Y., & Xu, F.-L. (2007). Changes of cell proliferation and differentiation in the developing brain of mouse. Neuroscience Bulletin, 23(1), 46-52. https://doi.org/10.1007/s12264-007-0007-0
  • [20] Barrón-González, M., Montes-Aparicio, A. V., Cuevas-Galindo, M. E., Orozco-Suárez, S., Barrientos, R., Alatorre, A., … & Soriano-Ursúa, M. A. (2023). Boroncontaining compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. Journal of Inorganic Biochemistry, 238, 112027. https://doi.org/10.1016/j.jinorgbio.2022.112027
  • [21] Barranco, W. T., & Eckhert, C. D. (2006). Cellular changes in boric acid-treated DU-145 prostate cancer cells. British Journal of Cancer, 94(6), 884-890. https://doi.org/10.1038/sj.bjc.6603009
  • [22] Sogut, I., Oglakcı, A., Kartkaya, K., Ol, K. K., Sogut, M. S., Kanbak, G., & Inal, M. E. (2014). Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Experimental and Therapeutic Medicine, 9(3), 1023-1027. https://doi.org/10.3892/etm.2014.2164
  • [23] Ince, S., Kucukkurt, I., Cigerci, I. H., Fatih Fidan, A., & Eryavuz, A. (2010). The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. Journal of Trace Elements in Medicine and Biology, 24(3), 161-164. https://doi.org/10.1016/j.jtemb.2010.01.003
  • [24] Yousefzadehmoghaddam, R., Hassanpour, M., Öztürk, A., & Karabulut, S., (2023). Investigation of the effect of galium aparine extract on glutamate excitotoxicity induced in C6-glioma cell line. Health Sciences Student Journal, 3(1), 8-18. Retrieved from https://journals.indexcopernicus.com/api/file/viewByFileId/1773565
  • [25] Taskiran, A. S., & Ergul, M. (2021). The effect of salmon calcitonin against glutamate-induced cytotoxicity in the C6 cell line and the roles the inflammatory and nitric oxide pathways play. Metabolic Brain Disease, 36(7), 1985-1993. https://doi.org/10.1007/s11011-021-00793-6
  • [26] Dirik, H., & Joha, Z. (2023). Investigation of the effect of sugammadex on glutamate-induced neurotoxicity in C6 cell line and the roles played by nitric oxide and oxidative stress pathways. Fundam Clin Pharmacol, 37(4), 786-793. https://doi.org/10.1111/fcp.12890
  • [27] Gömeç, M., İpek, G., Öztürk, A., & Şahin İnan, D. (2022). Effect of wheat germ oil on wound healing: An in vitro study in fibroblast cells. Turkish Journal of Science and Health, 3(3), 230-235. https://doi.org/10.51972/tfsd.1128533
  • [28] Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • [29] Taşkıran, A. Ş., & Topçu, A. (2023). Investigation of the protective role of quercetin on oxidative stress and endoplasmic stress pathway in 4-aminopyridine-induced neuronal damage. Turkish Journal of Agriculture - Food Science and Technology, 11(1), 2505-2511. https://doi.org/10.24925/turjaf.v11is1.2505-2511.6413
  • [30] Filiz, A. K., Joha, Z., & Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on SH-sy5y cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org/10.3329/bjp.v16i4.54872
  • [31] Gavande, N., Kim, H.-L., Doddareddy, M. R., Johnston, G. A., Chebib, M., & Hanrahan, J. R. (2013). Design, synthesis, and pharmacological evaluation of fluorescent and biotinylated antagonists of ρ1 GABAC Receptors. ACS Medicinal Chemistry Letters, 4(4), 402-407. https://doi.org/10.1021/ml300476v
  • [32] Soriano-Ursúa, M. A., Bello, M., Hernández-Martínez, C. F., Santillán-Torres, I., Guerrero-Ramírez, R., Correa-Basurto, J., … & Trujillo-Ferrara, J. G. (2018). Cell-based assays and molecular dynamics analysis of a boron-containing agonist with different profiles of binding to human and guinea pig beta2 adrenoceptors. European Biophysics Journal, 48(1), 83-97. https://doi. org/10.1007/s00249-018-1336-9
  • [33] Vernekar, S. K., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C., & Lochner, M. (2010). Toward biophysical probes for the 5-HT3 receptor: Structure−activity relationship study of granisetron derivatives. Journal of Medicinal Chemistry, 53(5), 2324-2328. https://doi.org/10.1021/jm901827x
  • [34] Çolak, S., Geyikoğlu, F., Keles, O. N., Türkez, H., Topal, A., & Unal, B. (2011). The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicology and Industrial Health, 27(8), 700-710. https://doi.org/10.1177/0748233710395349
  • [35] Kar, F., Hacioğlu, C., & Kaçar, S. (2022). The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environmental Toxicology, 38(1), 70-77. https://doi.org/10.1002/tox.23662
  • [36] Kizilay, Z., Erken, H., Çetin, N., Aktaş, S., Abas, B., & Yılmaz, A. (2016). Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regeneration Research, 11(10), 1660. https://doi.org/10.4103/1673-5374.193247
  • [37] Zafar, H., & Ali, S. (2013). Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Archives of Biochemistry and Biophysics, 529(2), 66-74. https://doi.org/10.1016/j.abb.2012.11.008
  • [38] Ince, S., Kucukkurt, I., Demirel, H. H., Acaroz, D. A., Akbel, E., & Cigerci, I. H. (2014). Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere, 108, 197-204. https://doi.org/10.1016/j.chemosphere.2014.01.038
  • [39] Ayhanci, A., Tanriverdi, D. T., Sahinturk, V., Cengiz, M., Appak-Baskoy, S., & Sahin, I. K. (2019). Protective effects of boron on cyclophosphamide-induced bladder damage and oxidative stress in rats. Biological Trace Element Research, 197(1), 184-191. https://doi.org/10.1007/s12011-019-01969-z
  • [40] Coban, F. K., Ince, S., Kucukkurt, I., Demirel, H. H., & Hazman, O. (2014). Boron attenuates malathioninduced oxidative stress and acetylcholinesterase inhibition in rats. Drug and Chemical Toxicology, 38(4), 391-399. https://doi.org/10.3109/01480545.2014.974109
  • [41] Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., … & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and Chemical Toxicology, 118, 745-752. https://doi.org/10.1016/j.fct.2018.06.029
  • [42] Ataizi, Z. S., Ozkoc, M., Kanbak, G., Karimkhani, H., Burukoglu Donmez, D., Ustunisik, N., & Ozturk, B. (2019). Evaluation of the neuroprotective role of boric acid in preventing traumatic brain injury-mediated oxidative stress. Turkish Neurosurgery, 31(4). https://doi.org/10.5137/1019-5149.jtn.25692-18.4
  • [43] Yavuz, E., Çevik, G., Çevreli, B., & Serdaroğlu Kaşıkçı, E. (2023). Effect of boric acid and quercetin combination on oxidative stress/ cognitive function in parkinson model. Journal of Boron, 8(3), 85-91. https://doi.org/10.30728/boron.1215949
  • [44] Filiz, A. K., Öztürk, A. (2021). The effect of carbamazepine against glutamate-induced cytotoxicity in the C6 cell line. International Journal of Scientific and Technological Research, 7(8). https://doi.org/10.7176/jstr/7-08-09
  • [45] Yıldızhan, K., & Öztürk, A. (2022). Quipazine treatment exacerbates oxidative stress in glutamate-induced HT-22 neuronal cells. The European Research Journal, 8(4), 521-528. https://doi.org/10.18621/eurj.1027423
  • [46] Çakır Çanak, T., Akpınar, S., & Serhatlı, E. (2017). Homopolymerization and synthesis of a new methacrylate monomer bearing a boron side group: Characterization and determination of monomer reactivity ratios with styrene. Turkish Journal of Chemistry, 41, 209-220. https://doi.org/10.3906/kim-1603-106
  • [47] Şahin, B., & Karabulut, S. (2022). Sugammadex causes C6 glial cell death and exacerbates hydrogen peroxideinduced oxidative stress. Cumhuriyet Medical Journal, 44(1), 22-27. https://doi.org/10.7197/cmj.1069629
  • [48] Dohi, K., Satoh, K., Nakamachi, T., Yofu, S., Hiratsuka, K., Nakamura, S., … & Aruga, T. (2007). Does Edaravone (MCI-186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury? Antioxidants & Redox Signaling, 9(2), 281-287. https://doi.org/10.1089/ars.2007.9.281
  • [49] Topal Canbaz, G., Keskin, Z. S., Yokuş, A., & Aslan, R. (2023). Biofabrication of copper oxide nanoparticles using solanum tuberosum L. var. Vitelotte: Characterization, antioxidant and antimicrobial activity. Chemical Papers, 77(8), 4277-4284. https://doi.org/10.1007/s11696-023-02776-6
  • [50] Sahin, N., Akdemir, F., Orhan, C., Aslan, A., Agca, C. A., Gencoglu, H., … & Sahin, K. (2012). A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats. Nutritional Neuroscience, 15(5), 42-47. https://doi.org/10.1179/1476830512y.0000000018
  • [51] Hazman, Ö., Bozkurt, M. F., Fidan, A. F., Uysal, F. E., & Çelik, S. (2018). The effect of boric acid and borax on oxidative stress, inflammation, er stress and apoptosis in cisplatin toxication and nephrotoxicity developing as a result of toxication. Inflammation, 41(3), 1032-1048. https://doi.org/10.1007/s10753-018-0756-0
  • [52] Hacioglu, C., Kar, F., Kar, E., Kara, Y., & Kanbak, G. (2020). Effects of curcumin and boric acid against neurodegenerative damage induced by amyloid beta (1-42). Biological Trace Element Research. 199, 3793-3800. https://doi.org/10.1007/s12011-020-02511-2

The role of oxidative stress in the protective effect of boric acid against glutamate excitotoxicity in C6 glioma cells

Year 2025, Volume: 10 Issue: 1, 1 - 9, 01.04.2025

Abstract

This study designed to investigate the biochemical changes in glial cells' oxidant/antioxidant systems in response to glutamate-induced excitotoxicity of boric acid (BA). The present study employed C6 glial cells. For the study, cells were separated into 4 groups as control, glutamate (10mM), glutamate+BA (0,23; 0,46; 0,93; 1,87 and 3,75 μg/mL), and BA (0,23; 0,46; 0,93; 1,87 and 3,75 μg/mL). The control group was not treated. The cells in the glutamate group were treated with 10 mM glutamate for 24 hours. BA was administered one hour prior to the addition of glutamate and incubated for 24 hours. The viability of the cells was evaluated using an XTT assay. Commercial kits were used for biochemical analyses. Significance was set at less than 0.05. The biochemical analysis revealed that the levels of malondialdehyde (MDA), nitric oxide (NO), inducible nitric oxide snythase (iNOS), neuronal nitric oxide synthase (nNOS), and total oxidant status (TOS) were elevated in the glutamate group compared to the control group (p<0.05). It was detemined that BA treatment resulted in a statistically significant reduction in these levels compared to the glutamate group. (p<0.05). The levels of SOD and TAS were found to decrease in the glutamate group and to increase with BA pretreatment (p<0.05). The results demonstrated that BA exhibited protective effects on glial cells against glutamate exposure. Furthermore, BA was observed to exert its neuroprotective effect by increasing the antioxidant defense mechanism and reducing oxidative and nitrosative stress.

Supporting Institution

TUBİTAK

Project Number

1919B012004287

Thanks

Bu çalışma TUBİTAK 2209-A (Proje no: 1919B012004287) Öğrenci projesi kapsamında yapılmıştır. Çalışmada gerekli olanakları sağladığı için Sivas Cumhuriyet Üniversitesi Tıp Fakültesi Araştırma Merkezi’ne (CÜTFAM) teşekkür ederiz.

References

  • [1] Wang, Y., & Qin, Z. (2010). Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis, 15(11), 1382-1402. https://doi.org/10.1007/s10495-010-0481-0
  • [2] Daniele, S. G., Trummer, G., Hossmann, K. A., Vrselja, Z., Benk, C., Gobeske, K. T., … & Sestan, N. (2021). Brain vulnerability and viability after ischaemia. Nature Reviews Neuroscience, 22(9), 553-572. https://doi.org/10.1038/s41583-021-00488-y
  • [3] Dong, X., Wang, Y., & Qin, Z. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 30(4), 379-387. https://doi.org/10.1038/aps.2009.24
  • [4] Kritis, A. A., Stamoula, E. G., Paniskaki, K. A., & Vavilis, T. D. (2015). Researching glutamate-induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Frontiers in Cellular Neuroscience, 9. https://doi.org/10.3389/fncel.2015.00091
  • [5] Felek, H., Çatal, T., Yulak, F., Filiz, A. K., & Karabulut, S. (2024). The effect of myostatin on glutamate excitotoxicity induced in SH-SY5Y cell line. Health Sciences Student Journal, 4(1), 1-6. Erişim Adresi: https://ojs.healthssj.com/index.php/panel/article/view/15
  • [6] Barbeito, L. H., Pehar, M., Cassina, P., Vargas, M. R., Peluffo, H., Viera, L., … & Beckman, J. S. (2004). A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Research Reviews, 47(1-3), 263-274. https://doi.org/10.1016/j.brainresrev.2004.05.003
  • [7] Hertz, L. (2006). Glutamate, a neurotransmitter-and so much more. Neurochemistry International, 48(6-7), 416-425. https://doi.org/10.1016/j.neuint.2005.12.021
  • [8] Pope, S. A., Milton, R., & Heales, S. J. (2008). Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochemical Research, 33(7), 1410-1418. https://doi.org/10.1007/s11064-008-9602-3
  • [9] Quincozes-Santos, A., & Gottfried, C. (2011). Resveratrol modulates astroglial functions: Neuroprotective hypothesis. Annals of the New York Academy of Sciences, 1215(1), 72-78. https://doi.org/10.1111/j.1749-6632.2010.05857.x
  • [10] Benda, P., Lightbody, J., Sato, G., Levine, L., & Sweet, W. (1968). Differentiated rat glial cell strain in tissue culture. Science, 161(3839), 370-371. https://doi.org/10.1126/science.161.3839.370
  • [11] Gutteridge, J. M. C., & Halliwell, B. (2010). Antioxidants: Molecules, medicines, and myths. Biochemical and Biophysical Research Communications, 393(4), 561-564. https://doi.org/10.1016/j.bbrc.2010.02.071
  • [12] Karademir M., Öztürk, A., Yulak, F., Özkaraca, M., & Taskiran, A. S. (2024). Unveiling the protective potential of sugammadex against ptz-induced epileptic seizures in mice: A comprehensive study on oxidative stress, apoptosis, and autophagy. Neurochemical Journal, 18(2), 338-347. https://doi.org/10.1134/s1819712424020181
  • [13] Azimullah, S., Meeran, M. F., Ayoob, K., Arunachalam, S., Ojha, S., & Beiram, R. (2023). Tannic acid mitigates rotenone-induced dopaminergic neurodegeneration by inhibiting inflammation, oxidative stress, apoptosis, and glutamate toxicity in rats. International Journal of Molecular Sciences, 24(12), 9876. https://doi.org/10.3390/ijms24129876
  • [14] Brocardo, P. S., Gil-Mohapel, J., & Christie, B. R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Research Reviews, 67(1-2), 209-225. https://doi.org/10.1016/j.brainresrev.2011.02.001
  • [15] Javed, H., Azimullah, S., Haque, M. E., & Ojha, S. K. (2016). Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of parkinson’s disease. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00321
  • [16] Ergül, M., & Taşkıran, A. Ş. (2021). Thiamine protects glioblastoma cells against glutamate toxicity by suppressing oxidative/endoplasmic reticulum stress. Chemical and Pharmaceutical Bulletin, 69(9), 832-839. https://doi.org/10.1248/cpb.c21-00169
  • [17] Salim, S. (2017). Oxidative stress and the central nervous system. The Journal of Pharmacology and Experimental Therapeutics, 360(1), 201-205. https://doi.org/10.1124/jpet.116.237503
  • [18] Nielsen, F. H. (2008). Is boron nutritionally relevant? Nutrition Reviews, 66(4), 183-191. https://doi.org/10.1111/j.1753-4887.2008.00023.x
  • [19] Qiu, L., Zhu, C.-L., Wang, X.-Y., & Xu, F.-L. (2007). Changes of cell proliferation and differentiation in the developing brain of mouse. Neuroscience Bulletin, 23(1), 46-52. https://doi.org/10.1007/s12264-007-0007-0
  • [20] Barrón-González, M., Montes-Aparicio, A. V., Cuevas-Galindo, M. E., Orozco-Suárez, S., Barrientos, R., Alatorre, A., … & Soriano-Ursúa, M. A. (2023). Boroncontaining compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. Journal of Inorganic Biochemistry, 238, 112027. https://doi.org/10.1016/j.jinorgbio.2022.112027
  • [21] Barranco, W. T., & Eckhert, C. D. (2006). Cellular changes in boric acid-treated DU-145 prostate cancer cells. British Journal of Cancer, 94(6), 884-890. https://doi.org/10.1038/sj.bjc.6603009
  • [22] Sogut, I., Oglakcı, A., Kartkaya, K., Ol, K. K., Sogut, M. S., Kanbak, G., & Inal, M. E. (2014). Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Experimental and Therapeutic Medicine, 9(3), 1023-1027. https://doi.org/10.3892/etm.2014.2164
  • [23] Ince, S., Kucukkurt, I., Cigerci, I. H., Fatih Fidan, A., & Eryavuz, A. (2010). The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. Journal of Trace Elements in Medicine and Biology, 24(3), 161-164. https://doi.org/10.1016/j.jtemb.2010.01.003
  • [24] Yousefzadehmoghaddam, R., Hassanpour, M., Öztürk, A., & Karabulut, S., (2023). Investigation of the effect of galium aparine extract on glutamate excitotoxicity induced in C6-glioma cell line. Health Sciences Student Journal, 3(1), 8-18. Retrieved from https://journals.indexcopernicus.com/api/file/viewByFileId/1773565
  • [25] Taskiran, A. S., & Ergul, M. (2021). The effect of salmon calcitonin against glutamate-induced cytotoxicity in the C6 cell line and the roles the inflammatory and nitric oxide pathways play. Metabolic Brain Disease, 36(7), 1985-1993. https://doi.org/10.1007/s11011-021-00793-6
  • [26] Dirik, H., & Joha, Z. (2023). Investigation of the effect of sugammadex on glutamate-induced neurotoxicity in C6 cell line and the roles played by nitric oxide and oxidative stress pathways. Fundam Clin Pharmacol, 37(4), 786-793. https://doi.org/10.1111/fcp.12890
  • [27] Gömeç, M., İpek, G., Öztürk, A., & Şahin İnan, D. (2022). Effect of wheat germ oil on wound healing: An in vitro study in fibroblast cells. Turkish Journal of Science and Health, 3(3), 230-235. https://doi.org/10.51972/tfsd.1128533
  • [28] Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • [29] Taşkıran, A. Ş., & Topçu, A. (2023). Investigation of the protective role of quercetin on oxidative stress and endoplasmic stress pathway in 4-aminopyridine-induced neuronal damage. Turkish Journal of Agriculture - Food Science and Technology, 11(1), 2505-2511. https://doi.org/10.24925/turjaf.v11is1.2505-2511.6413
  • [30] Filiz, A. K., Joha, Z., & Yulak, F. (2021). Mechanism of anti-cancer effect of β-glucan on SH-sy5y cell line. Bangladesh Journal of Pharmacology, 16(4), 122-128. https://doi.org/10.3329/bjp.v16i4.54872
  • [31] Gavande, N., Kim, H.-L., Doddareddy, M. R., Johnston, G. A., Chebib, M., & Hanrahan, J. R. (2013). Design, synthesis, and pharmacological evaluation of fluorescent and biotinylated antagonists of ρ1 GABAC Receptors. ACS Medicinal Chemistry Letters, 4(4), 402-407. https://doi.org/10.1021/ml300476v
  • [32] Soriano-Ursúa, M. A., Bello, M., Hernández-Martínez, C. F., Santillán-Torres, I., Guerrero-Ramírez, R., Correa-Basurto, J., … & Trujillo-Ferrara, J. G. (2018). Cell-based assays and molecular dynamics analysis of a boron-containing agonist with different profiles of binding to human and guinea pig beta2 adrenoceptors. European Biophysics Journal, 48(1), 83-97. https://doi. org/10.1007/s00249-018-1336-9
  • [33] Vernekar, S. K., Hallaq, H. Y., Clarkson, G., Thompson, A. J., Silvestri, L., Lummis, S. C., & Lochner, M. (2010). Toward biophysical probes for the 5-HT3 receptor: Structure−activity relationship study of granisetron derivatives. Journal of Medicinal Chemistry, 53(5), 2324-2328. https://doi.org/10.1021/jm901827x
  • [34] Çolak, S., Geyikoğlu, F., Keles, O. N., Türkez, H., Topal, A., & Unal, B. (2011). The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicology and Industrial Health, 27(8), 700-710. https://doi.org/10.1177/0748233710395349
  • [35] Kar, F., Hacioğlu, C., & Kaçar, S. (2022). The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environmental Toxicology, 38(1), 70-77. https://doi.org/10.1002/tox.23662
  • [36] Kizilay, Z., Erken, H., Çetin, N., Aktaş, S., Abas, B., & Yılmaz, A. (2016). Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regeneration Research, 11(10), 1660. https://doi.org/10.4103/1673-5374.193247
  • [37] Zafar, H., & Ali, S. (2013). Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Archives of Biochemistry and Biophysics, 529(2), 66-74. https://doi.org/10.1016/j.abb.2012.11.008
  • [38] Ince, S., Kucukkurt, I., Demirel, H. H., Acaroz, D. A., Akbel, E., & Cigerci, I. H. (2014). Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere, 108, 197-204. https://doi.org/10.1016/j.chemosphere.2014.01.038
  • [39] Ayhanci, A., Tanriverdi, D. T., Sahinturk, V., Cengiz, M., Appak-Baskoy, S., & Sahin, I. K. (2019). Protective effects of boron on cyclophosphamide-induced bladder damage and oxidative stress in rats. Biological Trace Element Research, 197(1), 184-191. https://doi.org/10.1007/s12011-019-01969-z
  • [40] Coban, F. K., Ince, S., Kucukkurt, I., Demirel, H. H., & Hazman, O. (2014). Boron attenuates malathioninduced oxidative stress and acetylcholinesterase inhibition in rats. Drug and Chemical Toxicology, 38(4), 391-399. https://doi.org/10.3109/01480545.2014.974109
  • [41] Acaroz, U., Ince, S., Arslan-Acaroz, D., Gurler, Z., Kucukkurt, I., Demirel, H. H., … & Zhu, K. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and Chemical Toxicology, 118, 745-752. https://doi.org/10.1016/j.fct.2018.06.029
  • [42] Ataizi, Z. S., Ozkoc, M., Kanbak, G., Karimkhani, H., Burukoglu Donmez, D., Ustunisik, N., & Ozturk, B. (2019). Evaluation of the neuroprotective role of boric acid in preventing traumatic brain injury-mediated oxidative stress. Turkish Neurosurgery, 31(4). https://doi.org/10.5137/1019-5149.jtn.25692-18.4
  • [43] Yavuz, E., Çevik, G., Çevreli, B., & Serdaroğlu Kaşıkçı, E. (2023). Effect of boric acid and quercetin combination on oxidative stress/ cognitive function in parkinson model. Journal of Boron, 8(3), 85-91. https://doi.org/10.30728/boron.1215949
  • [44] Filiz, A. K., Öztürk, A. (2021). The effect of carbamazepine against glutamate-induced cytotoxicity in the C6 cell line. International Journal of Scientific and Technological Research, 7(8). https://doi.org/10.7176/jstr/7-08-09
  • [45] Yıldızhan, K., & Öztürk, A. (2022). Quipazine treatment exacerbates oxidative stress in glutamate-induced HT-22 neuronal cells. The European Research Journal, 8(4), 521-528. https://doi.org/10.18621/eurj.1027423
  • [46] Çakır Çanak, T., Akpınar, S., & Serhatlı, E. (2017). Homopolymerization and synthesis of a new methacrylate monomer bearing a boron side group: Characterization and determination of monomer reactivity ratios with styrene. Turkish Journal of Chemistry, 41, 209-220. https://doi.org/10.3906/kim-1603-106
  • [47] Şahin, B., & Karabulut, S. (2022). Sugammadex causes C6 glial cell death and exacerbates hydrogen peroxideinduced oxidative stress. Cumhuriyet Medical Journal, 44(1), 22-27. https://doi.org/10.7197/cmj.1069629
  • [48] Dohi, K., Satoh, K., Nakamachi, T., Yofu, S., Hiratsuka, K., Nakamura, S., … & Aruga, T. (2007). Does Edaravone (MCI-186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury? Antioxidants & Redox Signaling, 9(2), 281-287. https://doi.org/10.1089/ars.2007.9.281
  • [49] Topal Canbaz, G., Keskin, Z. S., Yokuş, A., & Aslan, R. (2023). Biofabrication of copper oxide nanoparticles using solanum tuberosum L. var. Vitelotte: Characterization, antioxidant and antimicrobial activity. Chemical Papers, 77(8), 4277-4284. https://doi.org/10.1007/s11696-023-02776-6
  • [50] Sahin, N., Akdemir, F., Orhan, C., Aslan, A., Agca, C. A., Gencoglu, H., … & Sahin, K. (2012). A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats. Nutritional Neuroscience, 15(5), 42-47. https://doi.org/10.1179/1476830512y.0000000018
  • [51] Hazman, Ö., Bozkurt, M. F., Fidan, A. F., Uysal, F. E., & Çelik, S. (2018). The effect of boric acid and borax on oxidative stress, inflammation, er stress and apoptosis in cisplatin toxication and nephrotoxicity developing as a result of toxication. Inflammation, 41(3), 1032-1048. https://doi.org/10.1007/s10753-018-0756-0
  • [52] Hacioglu, C., Kar, F., Kar, E., Kara, Y., & Kanbak, G. (2020). Effects of curcumin and boric acid against neurodegenerative damage induced by amyloid beta (1-42). Biological Trace Element Research. 199, 3793-3800. https://doi.org/10.1007/s12011-020-02511-2
There are 52 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Articles
Authors

Ayşegül Öztürk 0000-0001-8130-7968

Ahmet Şevki Taşkıran 0000-0002-5810-8415

Emin Gündoğdu 0009-0000-3293-1131

Project Number 1919B012004287
Publication Date April 1, 2025
Submission Date July 19, 2024
Acceptance Date January 2, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Öztürk, A., Taşkıran, A. Ş., & Gündoğdu, E. (2025). The role of oxidative stress in the protective effect of boric acid against glutamate excitotoxicity in C6 glioma cells. Journal of Boron, 10(1), 1-9. https://doi.org/10.30728/boron.1519354