Research Article
BibTex RIS Cite

Ni-Co-Ta-W-B metalik cam alaşımının metal matrisli kompozit üretiminde kullanım potansiyelinin arttırılması için camlaşma kabiliyetinin geliştirilmesi

Year 2025, Volume: 10 Issue: 1, 35 - 42, 01.04.2025
https://doi.org/10.30728/boron.1573965

Abstract

Bu çalışmada, B açısından zengin Ni-Co-W-B metalik cam alaşımı ailesinin cam oluşturma yeteneği Fe ve Cr ilavesiyle arttırılmıştır. Bu alaşım ailesi, yüksek tokluk ve sertliğe sahip metal matrisli kompozit (MMC) malzemelerin üretiminde öncü olarak hizmet edebilecek umut verici bir malzeme grubunu temsil etmektedir. Alaşım ailesinin kristalleşmesi sonucunda yüksek tokluk sağlayabilen bir Ni katı çözeltisi ve çok yüksek sertliğe sahip bir borür fazı (CoWB) oluşmaktadır. Yüksek kristalleşme sıcaklığına sahip dökme metalik camlardan biri olan Ni31,56Co21,74B15W23,7Ta8 alaşımının cam oluşturma yeteneği, termal özellikleri ve mikrosertlik özellikleri Fe ve Cr elementleri eklenerek incelenmiştir. Alaşımların yapısal ve termal özellikleri X-ışını kırınımı (XRD), diferansiyel taramalı kalorimetri (DSC), Vickers mikrosertliği ve taramalı elektron mikroskobu (SEM) analizleri kullanılarak araştırılmıştır. Analizler, Cr ilavesinin alaşımdaki kristalleşmeyi arttırdığını, dolayısıyla cam oluşturma yeteneğini olumsuz yönde etkilediğini ortaya çıkarmıştır. Buna karşılık, Fe'nin belirli seviyelerde eklenmesinin alaşımın cam oluşturma yeteneğini artırabileceği belirlenmiştir. Ni21,5Co21,5Fe10,3B15W23,7Ta8 alaşımı, 747°C'de ölçülen kristalizasyon sıcaklığı (Tx) ile 1 mm'lik kritik döküm kalınlığı sergilemiştir. Mikro sertlik ölçümleri alaşımın sertliğinin 1253 HV olduğunu ortaya çıkarmıştır. Uygun miktarlarda Fe eklenmesinin cam oluşturma yeteneğini artırabileceği, Cr eklenmesinin ise cam oluşturma eğilimini olumsuz yönde etkilediği gösterilmiştir.

Project Number

17. FEN. BİL. 67

References

  • [1] Klement Jun, W., Willens, R. H., & Duwez, P. (1960). Non-crystalline structure in solidified gold-silicon alloys. Nature, 187, 869-870. https://doi.org/10.1038/187869b0
  • [2] Inoue, A., & Takeuchi, A. (2011). Recent development and application products of bulk glassy alloys. Acta Materialia, 59(6), 2243-2267. https://doi.org/10.1016/j.actamat.2010.11.027
  • [3] Hofmann, D. C., Andersen, L. M., Kolodziejska J., Roberts, S. N., Borgonia, J. P., Johnson, W. L., … & Kennett, A. (2016). Optimizing bulk metallic glasses for robust, highly wear-resistant gears. Advanced Engineering Materials, 19(1), 1600541. https://doi.org/10.1002/adem.201600541
  • [4] Telford, M. (2004). The case for bulk metallic glass. Materials Today, 7(3), 36-43. https://doi.org/10.1016/S1369-7021(04)00124-5
  • [5] Laghari, R. A., Jamil, M., Laghari, A. A., & Khan, A. M. (2025). Material characteristics and machinability of metal matrix composite materials: A critical review on recent advances and future perspectives. Measurement, 242, Part B, 115839. https://doi.org/10.1016/j.measurement.2024.115839
  • [6] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of Ag-SnO2 electrical contact material. Journal of Nanoelectronics and Optoelectronics. 14(7), 1010-1015. https://doi.org/10.1166/jno.2019.2592
  • [7] Subramanian, J., Seetharaman, S., & Gupta, M. (2015). Processing and properties of aluminum and magnesium based composites containing amorphous reinforcement: A review. Metals, 5, 743-762. https://doi.10.3390/met5020743
  • [8] Hufenbach, W., Andrich, M., Langkamp, A., & Czulak, A. (2006). Fabrication technology and material characterization of carbon fibre reinforced magnesium. Journal of Materials Processing Technology, 175, 218-224. https://doi.10.1016/j.jmatprotec.2005.04.023
  • [9] Hitit, A., Yazici, Z. O., Sahin, H., Ozturk, P., Asgin, A.M., & Hitit, B. (2019). A novel Ni-based bulk metallic glass containing high amount of tungsten and boron. Journal of Alloys and Compounds, 807, 151661. https://doi.org/10.1016/j.jallcom.2019.151661
  • [10] Hitit, A., Yazici, Z. O., Ozturk, P., Sahin, H. Asgin, A. M. & Hitit, B. (2021). A Ni-CoWB composite developed by devitrification of Ni-Co-W-B bulk metallic glass. Materials Science & Engineering, 803, 140479. https://doi.org/10.1016/j.msea.2020.140479
  • [11] Zakhariev, Z., Zlateva, R. & Petrov, K. (1986). Microhardness and high-temperature oxidation stability of CoWB. Journal of the Less Common Metals, 117, 129-133. https://doi.org/10.1016/0022-5088(86)90021-4
  • [12] List, A., Gartner, F. Schmidt, T. & Klassen, T. (2012). Impact conditions for cold spraying of hard metallic glasses. Journal of Thermal Spray Technology, 21, 531-540. https://doi.10.1007/s11666-012-9750-5
  • [13] Nayak, S. K., Kumar, A., & Laha, T. (2022). Developing an economical wear and corrosion resistant febased metallic glass composite coating by plasma and HVOF Spraying. Journal of Thermal Spray Technology, 31, 1317-1329. https://doi.org/10.1007/s11666-021-01277-w
  • [14] Zhao, Z., Yang, G., & Zhao, K. (2022). 3D printing of Mg-based bulk metallic glasses with proper laser power and scanning speed. Metals, 12, 1318. https://doi.org/10.3390/met12081318
  • [15] Badoniya, P., Srivastava, M., Jain, P. K., & Rathee, S. (2024). A state of the art review on metal additive manufacturing: Milestones, trends, challenges and perspectives. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, 339 https://doi.org/10.1007/s40430-024-04917-8
  • [16] Sohrabi, N., Jhabvala, J., & Loge, R. E. (2021). Additive manufacturing of bulk metallic glasses-Process, challenges and properties: A review. Metals, 11(8), 1279. https://doi.org/10.3390/met11081279
  • [17] Madge, S. V., & Greer, A. L. (2021). Laser additive manufacturing of metallic glasses: Issues in vitrification and mechanical properties. Oxford Open Materials Science, 1(1), itab015. https://doi.org/10.1093/oxfmat/itab015
  • [18] Hoff, A. (2018). Understanding the origin of glass forming ability in metallic glasses. [Doctoral dissertation, California Institute of Technology] Pasadena, California. https://doi.org/10.7907/Z7Y5-0B62
  • [19] Lu, Z. P, Li, Y., & Ng, S. C. (2000). Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 270(1-3), 103-114. https://doi.org/10.1016/S0022-3093(00)00064-8
  • [20] Lu, Z. P., & Liu, C. T. (2002). A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 50(13), 3501-3512. https://doi.org/10.1016/S1359-6454(02)00166-0
  • [21] Hitit, A., Yazici, Z. O., Öztürk, P., Eryesil, B., Barut, N., & Sahin H. (2021). The effects of tantalum addition on the glass forming ability, thermal stability, and mechanical properties of Ni-Co-W-B bulk metallic glasses. Journal of Non-Crystalline Solids, 572, 121089. https://doi.org/10.1016/j.jnoncrysol.2021.121089
  • [22] Yazıcı, Z. O. (2020). Effect of vacuum conditions on stability and crystallization of cobalt based amorphous alloy. Materials Science-Poland, 38(1), 181-188. https://doi.org/10.2478/msp-2020-0003
  • [23] Sun, Y., Wang, Y., Zhang, J., Li, R., Guo, L., Xu, H., & Wang, W. (2015). Effect of casting vacuum on thermodynamic and corrosion properties of Fe-based glassy alloy. Transactions of Nonferrous Metals Society of China, 25(3), 844−849. https://doi.org/10.1016/S1003-6326(15)63672-X
  • [24] Igel, J., Kirk, D. W., Singh, C. V., & Thorpe, S.J. (2015). A practical investigation of the production of Zr-Cu-Al-Ni bulk metallic glasses by arc melting and suction casting. Materials Transactions, 56(11), 1834-1841. https://doi.org/10.2320/matertrans.M2015235

Enhancing the glass-forming ability of Ni-Co-Ta-W-B metallic glass alloy to increase its potential use in metal matrix composite production

Year 2025, Volume: 10 Issue: 1, 35 - 42, 01.04.2025
https://doi.org/10.30728/boron.1573965

Abstract

In this study, the glass-forming ability of the B-rich Ni-Co-W-B metallic glass alloy family has been enhanced through the addition of Fe and Cr. This alloy family represents a promising group of materials that can serve as precursors for producing metal matrix composite (MMC) materials with high toughness and hardness. As a result of the crystallization of the alloy family, a Ni solid solution that can provide high toughness and a boride phase (CoWB) with very high hardness is formed. The glass-forming ability, thermal properties, and microhardness characteristics of the Ni31.56Co21.74B15W23.7Ta8 alloy, one of the bulk metallic glasses with a high crystallization temperature, were investigated by adding Fe and Cr elements. The structural and thermal properties of the alloys were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), Vickers microhardness, and scanning electron microscopy (SEM) analyses. The analyses revealed that the addition of Cr increases crystallization in the alloy, thereby negatively impacting its glass-forming ability. In contrast, it was determined that incorporating Fe at certain levels can enhance the glass-forming ability of the alloy. The Ni21.5Co21.5Fe10.3B15W23.7Ta8 alloy exhibited a critical casting thickness of 1 mm, with a crystallization temperature (Tx) measured at 747°C. Micro-hardness measurements revealed that the hardness of the alloy is 1253 HV. It has been demonstrated that adding Fe in appropriate amounts can enhance the glass-forming ability, whereas the addition of Cr adversely affects the glass-forming tendency.

Ethical Statement

Tüm yazarların makaleyi okuduğunu ve gönderimini onayladığını ve makalenin hiçbir dilde tamamen veya kısmen yayınlanmadığını bildiriyoruz. 21-23 Kasım 2022 tarihlerinde Afyonkarahisar’da düzenlenen “XI. Uluslararası Katılımlı Seramik Kongresi” kongresinde “Ni-Co-B-W-Ta İri Hacimli Metalik Cam Alaşımının Demir ve Krom İlavesi ile Alaşımın Camlaşma Kabiliyeti ve Kristalizasyon Sıcaklığının Arttırılması” başlıklı olarak sözel sunum yapılmıştır. Çıkar çatışması yoktur, tüm yazarlar bu şekilde listelenmeyi kabul etmiş ve makalenin Bor Dergisi'nde yayınlanmasını onaylamıştır.

Supporting Institution

Afyon Kocatepe Üniversitesi, Bilimsel Araştırma Projeleri (BAP)

Project Number

17. FEN. BİL. 67

Thanks

Bu çalışması 17. FEN. BİL. 67 numaralı Afyon Kocatepe Üniversitesi, Bilimsel Araştırma Projeleri (BAP) tarafından desteklenmiştir.

References

  • [1] Klement Jun, W., Willens, R. H., & Duwez, P. (1960). Non-crystalline structure in solidified gold-silicon alloys. Nature, 187, 869-870. https://doi.org/10.1038/187869b0
  • [2] Inoue, A., & Takeuchi, A. (2011). Recent development and application products of bulk glassy alloys. Acta Materialia, 59(6), 2243-2267. https://doi.org/10.1016/j.actamat.2010.11.027
  • [3] Hofmann, D. C., Andersen, L. M., Kolodziejska J., Roberts, S. N., Borgonia, J. P., Johnson, W. L., … & Kennett, A. (2016). Optimizing bulk metallic glasses for robust, highly wear-resistant gears. Advanced Engineering Materials, 19(1), 1600541. https://doi.org/10.1002/adem.201600541
  • [4] Telford, M. (2004). The case for bulk metallic glass. Materials Today, 7(3), 36-43. https://doi.org/10.1016/S1369-7021(04)00124-5
  • [5] Laghari, R. A., Jamil, M., Laghari, A. A., & Khan, A. M. (2025). Material characteristics and machinability of metal matrix composite materials: A critical review on recent advances and future perspectives. Measurement, 242, Part B, 115839. https://doi.org/10.1016/j.measurement.2024.115839
  • [6] Biyik, S. (2019). Effect of cubic and hexagonal boron nitride additions on the synthesis of Ag-SnO2 electrical contact material. Journal of Nanoelectronics and Optoelectronics. 14(7), 1010-1015. https://doi.org/10.1166/jno.2019.2592
  • [7] Subramanian, J., Seetharaman, S., & Gupta, M. (2015). Processing and properties of aluminum and magnesium based composites containing amorphous reinforcement: A review. Metals, 5, 743-762. https://doi.10.3390/met5020743
  • [8] Hufenbach, W., Andrich, M., Langkamp, A., & Czulak, A. (2006). Fabrication technology and material characterization of carbon fibre reinforced magnesium. Journal of Materials Processing Technology, 175, 218-224. https://doi.10.1016/j.jmatprotec.2005.04.023
  • [9] Hitit, A., Yazici, Z. O., Sahin, H., Ozturk, P., Asgin, A.M., & Hitit, B. (2019). A novel Ni-based bulk metallic glass containing high amount of tungsten and boron. Journal of Alloys and Compounds, 807, 151661. https://doi.org/10.1016/j.jallcom.2019.151661
  • [10] Hitit, A., Yazici, Z. O., Ozturk, P., Sahin, H. Asgin, A. M. & Hitit, B. (2021). A Ni-CoWB composite developed by devitrification of Ni-Co-W-B bulk metallic glass. Materials Science & Engineering, 803, 140479. https://doi.org/10.1016/j.msea.2020.140479
  • [11] Zakhariev, Z., Zlateva, R. & Petrov, K. (1986). Microhardness and high-temperature oxidation stability of CoWB. Journal of the Less Common Metals, 117, 129-133. https://doi.org/10.1016/0022-5088(86)90021-4
  • [12] List, A., Gartner, F. Schmidt, T. & Klassen, T. (2012). Impact conditions for cold spraying of hard metallic glasses. Journal of Thermal Spray Technology, 21, 531-540. https://doi.10.1007/s11666-012-9750-5
  • [13] Nayak, S. K., Kumar, A., & Laha, T. (2022). Developing an economical wear and corrosion resistant febased metallic glass composite coating by plasma and HVOF Spraying. Journal of Thermal Spray Technology, 31, 1317-1329. https://doi.org/10.1007/s11666-021-01277-w
  • [14] Zhao, Z., Yang, G., & Zhao, K. (2022). 3D printing of Mg-based bulk metallic glasses with proper laser power and scanning speed. Metals, 12, 1318. https://doi.org/10.3390/met12081318
  • [15] Badoniya, P., Srivastava, M., Jain, P. K., & Rathee, S. (2024). A state of the art review on metal additive manufacturing: Milestones, trends, challenges and perspectives. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46, 339 https://doi.org/10.1007/s40430-024-04917-8
  • [16] Sohrabi, N., Jhabvala, J., & Loge, R. E. (2021). Additive manufacturing of bulk metallic glasses-Process, challenges and properties: A review. Metals, 11(8), 1279. https://doi.org/10.3390/met11081279
  • [17] Madge, S. V., & Greer, A. L. (2021). Laser additive manufacturing of metallic glasses: Issues in vitrification and mechanical properties. Oxford Open Materials Science, 1(1), itab015. https://doi.org/10.1093/oxfmat/itab015
  • [18] Hoff, A. (2018). Understanding the origin of glass forming ability in metallic glasses. [Doctoral dissertation, California Institute of Technology] Pasadena, California. https://doi.org/10.7907/Z7Y5-0B62
  • [19] Lu, Z. P, Li, Y., & Ng, S. C. (2000). Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 270(1-3), 103-114. https://doi.org/10.1016/S0022-3093(00)00064-8
  • [20] Lu, Z. P., & Liu, C. T. (2002). A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 50(13), 3501-3512. https://doi.org/10.1016/S1359-6454(02)00166-0
  • [21] Hitit, A., Yazici, Z. O., Öztürk, P., Eryesil, B., Barut, N., & Sahin H. (2021). The effects of tantalum addition on the glass forming ability, thermal stability, and mechanical properties of Ni-Co-W-B bulk metallic glasses. Journal of Non-Crystalline Solids, 572, 121089. https://doi.org/10.1016/j.jnoncrysol.2021.121089
  • [22] Yazıcı, Z. O. (2020). Effect of vacuum conditions on stability and crystallization of cobalt based amorphous alloy. Materials Science-Poland, 38(1), 181-188. https://doi.org/10.2478/msp-2020-0003
  • [23] Sun, Y., Wang, Y., Zhang, J., Li, R., Guo, L., Xu, H., & Wang, W. (2015). Effect of casting vacuum on thermodynamic and corrosion properties of Fe-based glassy alloy. Transactions of Nonferrous Metals Society of China, 25(3), 844−849. https://doi.org/10.1016/S1003-6326(15)63672-X
  • [24] Igel, J., Kirk, D. W., Singh, C. V., & Thorpe, S.J. (2015). A practical investigation of the production of Zr-Cu-Al-Ni bulk metallic glasses by arc melting and suction casting. Materials Transactions, 56(11), 1834-1841. https://doi.org/10.2320/matertrans.M2015235
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Hakan Şahin 0000-0002-5669-1918

Aytekin Hitit 0000-0003-2312-7840

Project Number 17. FEN. BİL. 67
Publication Date April 1, 2025
Submission Date October 27, 2024
Acceptance Date January 18, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Şahin, H., & Hitit, A. (2025). Ni-Co-Ta-W-B metalik cam alaşımının metal matrisli kompozit üretiminde kullanım potansiyelinin arttırılması için camlaşma kabiliyetinin geliştirilmesi. Journal of Boron, 10(1), 35-42. https://doi.org/10.30728/boron.1573965