Review
BibTex RIS Cite

Beyin-Bağırsak-Mikrobiyota Ekseni: Genel Bakış

Year 2021, Volume: 2 Issue: 1, 16 - 22, 30.06.2021

Abstract

Bağırsak-beyin ekseni, bağırsak sistemi ile merkezi sinir sistemi arasında duygusal ve bilişsel beyin bölgeleri ile periferik bağırsak fonksiyonlarını etkileyen biyokimyasal çift yönlü bir iletişim ağıdır. Bağırsak, mikrobiyota ve beyin arasındaki bu çift yönlü iletişim, endokrin, immün-humoral bağlantılar ve metabolitlerle sağlanır. Bağırsak mikrobiyotası poliaminler, nöropeptid benzeri bileşikler, nörotransmitterler ve nöromodülatör maddeler üretme yeteneğine sahiptir. Öncelikle bu metabolitler ve maddeler mikrobiyota-bağırsak etkileşim alanına yol açar ve beyin-bağırsak-mikrobiyota eksenini oluşturur. Beyin, sağlıklı bir enterik sistem ve sürdürülebilir dengeli bir mikrobiyota popülasyonu düzenleyicisidir. Benzer şekilde, enterik sistem ve mikrobiyota, normal merkezi sinir sistemi işleyişini düzenler ve tüm organizmanın homeokinesisini sürdürmek için merkezi sinir sistemi ile etkileşime girer. Ayrıca araştırmalar bağırsak mikrobiyotasının iltihaplı bağırsak hastalığından kansere ve şizofreniye kadar birçok fizyopatolojik süreçte önemli roller oynadığını da ortaya koymaktadır. Bağırsak mikrobiyotasının basit manipülasyonlarının, birçok karmaşık bağırsak ve merkezi sinir sistemi hastalığı için yeni tedavi yöntemlerine ilişkin bilgiler sağlayabileceği düşünülmektedir. Sonuç olarak; beyin-bağırsak-mikrobiyota ekseninin organizmanın homeokinesisinin sürdürülmesinde çok önemli olduğu ve bu eksendeki bozuklukların bazı hastalıkların oluşmasında kritik rol oynadığı açıktır. Bu derlemede beyin-bağırsak-mikrobiyota arasında iyi bilinen fizyolojik ve fizyopatolojik etkileşimlerin özetlenerek açıklanması amaçlandı.

References

  • 1. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature reviews Gastroenterology & Hepatology 2009; 6: 306. doi:10.1038/nrgastro.2009.35.
  • 2. Bercik P, Denou E, Collins J, Jackson W, Lu J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011a; 141: 599-609. doi:10.1053/j.gastro.2011.04.052.
  • 3. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 2012; 13: 701–712. doi:10.1038/nrn3346.
  • 4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65. doi:10.1038/nature08821.
  • 5. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biology 2007; 5: e156. doi:10.1371/journal.pbio.0050156.
  • 6. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO reports 2006; 7: 688-693. doi: 10.1038/sj.embor.7400731.
  • 7. Zoetendal EG, Rajilic-Stojanovic M, Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57: 1605–1615. doi:10.1136/gut.2007.133603.
  • 8. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 3698–3703. doi:10.1073/pnas.0812874106.
  • 9. Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2009; 41: 850–853. doi:10.1016/j.dld.2009.07.023.
  • 10. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500: 585–588. doi:10.1038/nature12480.
  • 11. McFarland LV, Dublin S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World Journal of Gastroenterology 2008; 14: 2650-2661. doi:10.3748/wjg.14.2650.
  • 12. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-72. doi: 10.2337/db06-1491.
  • 13. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nature reviews. Gastroenterology & Hepatology 2012; 9: 599–608. doi:10.1038/nrgastro.2012.152.
  • 14. Talley NJ, Fodor AA. Bugs, stool, and the irritable bowel syndrome: too much is as bad as too little? Gastroenterology 2011; 141: 1555–1559. doi:10.1053/j.gastro.2011.09.019.
  • 15. Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour biology : The journal of the International Society for Oncodevelopmental Biology and Medicine 2013; 34: 1285–1300. doi:10.1007/s13277-013-0684-4.
  • 16. Galdeano CM, de Moreno de LeBlanc A, Vinderola G, Bibas Bonet ME, et al. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology 2007;14: 485-492. doi:10.1128/CVI.00406-06.
  • 17. Lyte M. Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to-brain communication. Pharma Nutrition 2013; 1: 35–39. doi:10.1016/j.phanu.2012.11.002.
  • 18. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology 2012; 10: 735–742. doi:10.1038/nrmicro2876.
  • 19. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, et al. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochemical and Biophysical Research Communications 1997; 232: 682–686. doi:10.1006/bbrc.1997.6356.
  • 20. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility 2011; 23: 1132–1139. doi:10.1111/j.1365-2982.2011.01796.x.
  • 21. Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Current Opinion in Microbiology 2013; 16: 240–245. doi:10.1016/j.mib.2013.06.004.
  • 22. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 16050–16055. doi:10.1073/pnas.1102999108.
  • 23. Shalaby AR. Significance of biogenic amines in food safety and human health. Food Research International 1996; 29: 675–690. doi:10.1016/S0963-9969(96)00066-X.
  • 24. Mertz H. Role of the brain and sensory pathways in gastrointestinal sensory disorders in humans. Gastroenterology 2002; 51: 29–33. doi:10.1136/gut.51.suppl_1.i29.
  • 25. Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Autonomic Neuroscience 2010; 153: 41–46. doi:10.1016/j.autneu.2009.07.007.
  • 26. Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology 2007; 132: 2116–2130. doi:10.1053/j.gastro.2007.03.048.
  • 27. Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46: 261–274. doi:10.1016/j.npep.2012.08.005.
  • 28. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neuroscience 2008; 11: 752–753. doi:10.1038/nn.2139.
  • 29. Gulec G, Isbil-Buyukcoskun N, Kahveci N. Effects of centrally-injected glucagon-like peptide-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat. Neuropeptides 2010; 44: 285–291. doi:10.1016/j.npep.2010.02.002.
  • 30. Iwai T, Hayashi Y, Narita S, Kasuya Y, Jin K, et al. Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways. Behavioural Brain Research 2009; 204: 235–240. doi:10.1016/j.bbr.2009.06.020.
  • 31. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacological Reviews 2004; 56: 331–349. doi:10.1124/pr.56.3.1.
  • 32. Hughes DT, Sperandio V. Interkingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology 2008; 6: 111–120. doi:10.1038/nrmicro1836.
  • 33. Cogan TA, Thomas AO, Rees LEN, Taylor AH, Jepson MA, et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007; 56: 1060–1065. doi:10.1136/gut.2006.114926.
  • 34. Smith DK, Kassam T, Singh B, Elliott JF. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. Journal of Bacteriology 1992; 174: 5820–5826. doi:10.1128/jb.174.18.5820-5826.1992.
  • 35. Yokoyama S, Hiramatsu J, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering 2002; 93: 95–97. 36. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annual Review of Medicine 2011; 62: 381–383. doi:10.1146/annurev-med-012309-103958.
  • 37. Dotson VM, Beydoun MA, Zonderman AB. Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology 2010; 75: 27–34. doi:10.1212/WNL.0b013e3181e62124.
  • 38. McLean PG, Borman RA, Lee K. 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends in Neurosciences 2007; 30: 9–13. doi:10.1016/j.tins.2006.11.002.
  • 39. Folks DG. The interface of psychiatry and irritable bowel syndrome. Current Psychiatry Reports 2004; 6: 210–215. doi:10.1007/s11920-004-0066-0.
  • 40. Varnäs K, Halldin C, Hall H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping 2004; 22: 246–260. doi:10.1002/hbm.20035.
  • 41. Kirchgessner AL, Liu MT, Raymond JR, Gershon MD. Identification of cells that express 5-hydroxytryptamine 1A receptors in the nervous systems of the bowel and pancreas. The Journal of Comparative Neurology 1996; 364: 439–455. doi:10.1002/(SICI)1096-9861(19960115)364:3<439::AID-CNE5>3.0.CO;2-5.
  • 42. Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012; 142: 844-854. doi:10.1053/j.gastro.2011.12.041.
  • 43. Mawe GM, Branchek TA, Gershon MD. Peripheral neural serotonin receptors: identification and characterization with specific antagonists and agonists. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 9799–9803. doi:10.1073/pnas.83.24.9799.
  • 44. Sarrias MJ, Martinez E, Celada P, Udina C, Alvarez E, et al. Plasma free 5HT and platelet 5HT in depression: case-control studies and the effect of antidepressant therapy. Advances in Experimental Medicine and Biology 1991; 294: 653–658. doi:10.1007/978-1-4684-5952-4_87.
  • 45. Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, et al. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. Journal of Immunology 2000; 164: 3368–3376. doi:10.4049/jimmunol.164.6.3368.
  • 46. Shanahan F. The colonic microflora and probiotic therapy in health and disease. Current Opinion in Gastroenterology 2011; 27: 61–65. doi:10.1097/MOG.0b013e328340076f.
  • 47. Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Current Molecular Medicine 2008; 8: 274–281. doi:10.2174/156652408784533760.
  • 48. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. Journal of Affective Disorders 2012; 141: 55–62. doi:10.1016/j.jad.2012.02.023.
  • 49. Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain, Behavior and Immunity 2013; 27: 22–32. doi:10.1016/j.bbi.2012.09.003.
  • 50. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metabolic Brain Disease 2009; 24: 27–53. doi:10.1007/s11011-008-9118-1.
  • 51. Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Seminars in Immunopathology 2009; 31: 185–205. doi:10.1007/s00281-009-0165-4.
  • 52. Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction associated protein ZO-1 via VIPergic pathways. American Journal of Physiology Gastrointestinal Liver Physiology 2003; 285: 1028–1036. doi:10.1152/ajpgi.00066.2003.
  • 53. Wang L, Stanisz AM, Wershil BK, Galli SJ, Perdue MH. Substance P induces ion secretion in mouse small intestine through effects on enteric nerves and mast cells. The American Journal of Physiology 1995; 269: G85–G92. doi:10.1152/ajpgi.1995.269.1.G85.
  • 54. Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Autonomic Neuroscience: Basic and Clinical 2000; 85: 60–65. doi:10.1016/S1566-0702(00)00220-4.
  • 55. Dinan TG. Inflammatory markers in depression. Current Opinion in Psychiatry 2009; 22: 32–36. doi:10.1097/YCO.0b013e328315a561.
  • 56. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004; 126: 1657–1664. doi:10.1053/j.gastro.2004.03.013.
  • 57. Cicchetti D, Cohen DJ. Developmental Psychopathology: Developmental Neuroscience New York: Wiley; 2006.
  • 58. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology 2004; 558: 263–275. doi:10.1113/jphysiol.2004.063388.
  • 59. Langhorst J, Cobelens PM, Kavelaars A, Heijnen CJ, Benson S, et al. Stress-related peripheral neuroendocrine-immune interactions in women with ulcerative colitis. Psychoneuroendocrinology 2007; 32: 1086– 1096. doi:10.1016/j.psyneuen.2007.09.003.
  • 60. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition 2011; 105: 755–764. doi:10.1017/S0007114510004319.
  • 61. Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, et al. Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One 2012; 7: e46399. doi:10.1371/journal.pone.0046399.

Brain-Gut-Microbiota Axis: An Overview

Year 2021, Volume: 2 Issue: 1, 16 - 22, 30.06.2021

Abstract

The gut-brain axis is a biochemical bidirectional communication network between the intestinal system and the central nervous system, affecting emotional and cognitive brain regions and peripheral bowel functions. The brain is provided by endocrine, immune, humoral connections, and metabolites in this bidirectional communication between the gut and microbiota. The intestinal microbiota can produce polyamines, neuropeptide-like compounds, neurotransmitters, and neuromodulatory substances. First, these metabolites and substances lead to the microbiota-gut interaction area and form the brain-gut-microbiota axis. Similarly, the enteric system and microbiota interact with the central nervous system to maintain normal central nervous system functioning and homeokinesis of organismus totale. In addition, studies reveal that the intestinal microbiota plays an important role in many physiopathological processes, from inflammatory bowel disease to cancer and schizophrenia. Simple manipulations of the gut microbiota can provide information on new treatment methods for many complex intestinal and central nervous system diseases. As a result; It is clear that the brain-gut-microbiota axis is critical in maintaining the homeokinesis of the organism and disorders in this axis play a critical role in the development of some diseases. This review, it is aimed to summarize and explain well-known physiological and physiopathological interactions between brain-gut-microbiota.

References

  • 1. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature reviews Gastroenterology & Hepatology 2009; 6: 306. doi:10.1038/nrgastro.2009.35.
  • 2. Bercik P, Denou E, Collins J, Jackson W, Lu J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011a; 141: 599-609. doi:10.1053/j.gastro.2011.04.052.
  • 3. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 2012; 13: 701–712. doi:10.1038/nrn3346.
  • 4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59–65. doi:10.1038/nature08821.
  • 5. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biology 2007; 5: e156. doi:10.1371/journal.pbio.0050156.
  • 6. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO reports 2006; 7: 688-693. doi: 10.1038/sj.embor.7400731.
  • 7. Zoetendal EG, Rajilic-Stojanovic M, Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57: 1605–1615. doi:10.1136/gut.2007.133603.
  • 8. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 3698–3703. doi:10.1073/pnas.0812874106.
  • 9. Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2009; 41: 850–853. doi:10.1016/j.dld.2009.07.023.
  • 10. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500: 585–588. doi:10.1038/nature12480.
  • 11. McFarland LV, Dublin S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World Journal of Gastroenterology 2008; 14: 2650-2661. doi:10.3748/wjg.14.2650.
  • 12. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-72. doi: 10.2337/db06-1491.
  • 13. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nature reviews. Gastroenterology & Hepatology 2012; 9: 599–608. doi:10.1038/nrgastro.2012.152.
  • 14. Talley NJ, Fodor AA. Bugs, stool, and the irritable bowel syndrome: too much is as bad as too little? Gastroenterology 2011; 141: 1555–1559. doi:10.1053/j.gastro.2011.09.019.
  • 15. Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour biology : The journal of the International Society for Oncodevelopmental Biology and Medicine 2013; 34: 1285–1300. doi:10.1007/s13277-013-0684-4.
  • 16. Galdeano CM, de Moreno de LeBlanc A, Vinderola G, Bibas Bonet ME, et al. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology 2007;14: 485-492. doi:10.1128/CVI.00406-06.
  • 17. Lyte M. Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to-brain communication. Pharma Nutrition 2013; 1: 35–39. doi:10.1016/j.phanu.2012.11.002.
  • 18. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology 2012; 10: 735–742. doi:10.1038/nrmicro2876.
  • 19. Lyte M, Erickson AK, Arulanandam BP, Frank CD, Crawford MA, et al. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochemical and Biophysical Research Communications 1997; 232: 682–686. doi:10.1006/bbrc.1997.6356.
  • 20. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility 2011; 23: 1132–1139. doi:10.1111/j.1365-2982.2011.01796.x.
  • 21. Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Current Opinion in Microbiology 2013; 16: 240–245. doi:10.1016/j.mib.2013.06.004.
  • 22. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 16050–16055. doi:10.1073/pnas.1102999108.
  • 23. Shalaby AR. Significance of biogenic amines in food safety and human health. Food Research International 1996; 29: 675–690. doi:10.1016/S0963-9969(96)00066-X.
  • 24. Mertz H. Role of the brain and sensory pathways in gastrointestinal sensory disorders in humans. Gastroenterology 2002; 51: 29–33. doi:10.1136/gut.51.suppl_1.i29.
  • 25. Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Autonomic Neuroscience 2010; 153: 41–46. doi:10.1016/j.autneu.2009.07.007.
  • 26. Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology 2007; 132: 2116–2130. doi:10.1053/j.gastro.2007.03.048.
  • 27. Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46: 261–274. doi:10.1016/j.npep.2012.08.005.
  • 28. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neuroscience 2008; 11: 752–753. doi:10.1038/nn.2139.
  • 29. Gulec G, Isbil-Buyukcoskun N, Kahveci N. Effects of centrally-injected glucagon-like peptide-1 on pilocarpine-induced seizures, anxiety and locomotor and exploratory activity in rat. Neuropeptides 2010; 44: 285–291. doi:10.1016/j.npep.2010.02.002.
  • 30. Iwai T, Hayashi Y, Narita S, Kasuya Y, Jin K, et al. Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways. Behavioural Brain Research 2009; 204: 235–240. doi:10.1016/j.bbr.2009.06.020.
  • 31. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacological Reviews 2004; 56: 331–349. doi:10.1124/pr.56.3.1.
  • 32. Hughes DT, Sperandio V. Interkingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology 2008; 6: 111–120. doi:10.1038/nrmicro1836.
  • 33. Cogan TA, Thomas AO, Rees LEN, Taylor AH, Jepson MA, et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007; 56: 1060–1065. doi:10.1136/gut.2006.114926.
  • 34. Smith DK, Kassam T, Singh B, Elliott JF. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. Journal of Bacteriology 1992; 174: 5820–5826. doi:10.1128/jb.174.18.5820-5826.1992.
  • 35. Yokoyama S, Hiramatsu J, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering 2002; 93: 95–97. 36. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annual Review of Medicine 2011; 62: 381–383. doi:10.1146/annurev-med-012309-103958.
  • 37. Dotson VM, Beydoun MA, Zonderman AB. Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology 2010; 75: 27–34. doi:10.1212/WNL.0b013e3181e62124.
  • 38. McLean PG, Borman RA, Lee K. 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends in Neurosciences 2007; 30: 9–13. doi:10.1016/j.tins.2006.11.002.
  • 39. Folks DG. The interface of psychiatry and irritable bowel syndrome. Current Psychiatry Reports 2004; 6: 210–215. doi:10.1007/s11920-004-0066-0.
  • 40. Varnäs K, Halldin C, Hall H. Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping 2004; 22: 246–260. doi:10.1002/hbm.20035.
  • 41. Kirchgessner AL, Liu MT, Raymond JR, Gershon MD. Identification of cells that express 5-hydroxytryptamine 1A receptors in the nervous systems of the bowel and pancreas. The Journal of Comparative Neurology 1996; 364: 439–455. doi:10.1002/(SICI)1096-9861(19960115)364:3<439::AID-CNE5>3.0.CO;2-5.
  • 42. Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 2012; 142: 844-854. doi:10.1053/j.gastro.2011.12.041.
  • 43. Mawe GM, Branchek TA, Gershon MD. Peripheral neural serotonin receptors: identification and characterization with specific antagonists and agonists. Proceedings of the National Academy of Sciences of the United States of America 1986; 83: 9799–9803. doi:10.1073/pnas.83.24.9799.
  • 44. Sarrias MJ, Martinez E, Celada P, Udina C, Alvarez E, et al. Plasma free 5HT and platelet 5HT in depression: case-control studies and the effect of antidepressant therapy. Advances in Experimental Medicine and Biology 1991; 294: 653–658. doi:10.1007/978-1-4684-5952-4_87.
  • 45. Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, et al. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. Journal of Immunology 2000; 164: 3368–3376. doi:10.4049/jimmunol.164.6.3368.
  • 46. Shanahan F. The colonic microflora and probiotic therapy in health and disease. Current Opinion in Gastroenterology 2011; 27: 61–65. doi:10.1097/MOG.0b013e328340076f.
  • 47. Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Current Molecular Medicine 2008; 8: 274–281. doi:10.2174/156652408784533760.
  • 48. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. Journal of Affective Disorders 2012; 141: 55–62. doi:10.1016/j.jad.2012.02.023.
  • 49. Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain, Behavior and Immunity 2013; 27: 22–32. doi:10.1016/j.bbi.2012.09.003.
  • 50. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metabolic Brain Disease 2009; 24: 27–53. doi:10.1007/s11011-008-9118-1.
  • 51. Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Seminars in Immunopathology 2009; 31: 185–205. doi:10.1007/s00281-009-0165-4.
  • 52. Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction associated protein ZO-1 via VIPergic pathways. American Journal of Physiology Gastrointestinal Liver Physiology 2003; 285: 1028–1036. doi:10.1152/ajpgi.00066.2003.
  • 53. Wang L, Stanisz AM, Wershil BK, Galli SJ, Perdue MH. Substance P induces ion secretion in mouse small intestine through effects on enteric nerves and mast cells. The American Journal of Physiology 1995; 269: G85–G92. doi:10.1152/ajpgi.1995.269.1.G85.
  • 54. Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Autonomic Neuroscience: Basic and Clinical 2000; 85: 60–65. doi:10.1016/S1566-0702(00)00220-4.
  • 55. Dinan TG. Inflammatory markers in depression. Current Opinion in Psychiatry 2009; 22: 32–36. doi:10.1097/YCO.0b013e328315a561.
  • 56. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004; 126: 1657–1664. doi:10.1053/j.gastro.2004.03.013.
  • 57. Cicchetti D, Cohen DJ. Developmental Psychopathology: Developmental Neuroscience New York: Wiley; 2006.
  • 58. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology 2004; 558: 263–275. doi:10.1113/jphysiol.2004.063388.
  • 59. Langhorst J, Cobelens PM, Kavelaars A, Heijnen CJ, Benson S, et al. Stress-related peripheral neuroendocrine-immune interactions in women with ulcerative colitis. Psychoneuroendocrinology 2007; 32: 1086– 1096. doi:10.1016/j.psyneuen.2007.09.003.
  • 60. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition 2011; 105: 755–764. doi:10.1017/S0007114510004319.
  • 61. Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, et al. Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One 2012; 7: e46399. doi:10.1371/journal.pone.0046399.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Reviews
Authors

Mehmet Ekici 0000-0002-2163-6214

Hacer Baş Ekici 0000-0003-1941-1830

Publication Date June 30, 2021
Submission Date April 25, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

Vancouver Ekici M, Ekici HB. Beyin-Bağırsak-Mikrobiyota Ekseni: Genel Bakış. Bozok Vet Sci. 2021;2(1):16-22.