Review
BibTex RIS Cite

Sığır Mastitislerinde Yaz Mastitisinin Yeri

Year 2021, Volume: 2 Issue: 2, 85 - 95, 31.12.2021

Abstract

Mastitis, gelişmiş ve gelişmekte olan ülkelerde halen yaygınlığını koruyan bir enfeksiyondur. Sığırlarda görülen mastitisin, sadece meme bezine bağlı bir enfeksiyon olmadığı aynı zamanda sütün kalitesini ve miktarını düşürerek, süt endüstrisini de olumsuz yönde etkilediği bilinmektedir. Yönetim stratejilerinin geliştirilememesi, ortamdaki hijyenin sağlanamaması, sütteki yapısal değişiklerin takip edilememesi ve eğitimli personelin olmaması ile birlikte erken tanı ve tedavinin yapılamaması gibi nedenler hazırlayıcı faktörler arasındadır. Genel olarak mastitise neden olan mikroorganizmalar, bulaşıcı ve çevresel etkenler olarak sınıflandırılmaktadır. Son yıllarda yapılan araştırmalar ile birlikte yaz mastitisi etkenleri de bu sınıflandırmaya dahil edilmektedir. Mastitise neden olan patojen mikroorganizmalar, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Klebsiella pneumoniae ve Proteus spp. gibi hem Gram pozitif hem de Gram negatif bakterilerden oluşmaktadır. Yaz mastitisine neden olan mikroorganizmaların ise Trueperella pyogenes, Peptococcus indolicus ve Streptococcus dysgalactiae gibi Gram pozitif, fakültatif anaerob bakteriler olduğu görülmektedir. Mastitis semptomları arasında, sütte yapısal değişiklikler, memede ısı artışı, ağrı ve ödem görülürken, yaz mastitisi semptomlarında ise özellikle Hydrotaea irritans sineklerinin meme başında yapmış olduğu tutulumdan dolayı kötü kokulu akıntılar görülmektedir. Sütün organoleptik muayenesinden sonra direkt mikrobiyolojik analizlerinin yapılması, mastitisin erken tanısı, tedavisi, yönetimi ve önlenmesi için gereklidir. Etken izolasyon ve identifikasyonu ile birlikte antibiyotik duyarlılık testi, yapılacak olan tedavinin etkinliğini artırmaktadır. Hijyen koşullarının sağlanması ile birlikte hayvanların genel durumlarının ve süt verimlerinin takibi mastitisten korunmada etkilidir. Temmuz-eylül ayları arasında sinek kontrolü için dökme veya sprey preparatların kullanılması, sağım sonrası hijyen ve meme başı dolgu macunlarının uygulanması yaz mastitisinden korunmada önemlidir. Sonuç olarak yaz mastitislerine sığır mastitislerinin genel değerlendirilmesinde yer verilmelidir. Mastitisin tedavi öncesi ve sonrası mikrobiyolojik analizlerin yaygınlaştırılması önemini korumaktadır.

References

  • 1. Mourya A, Shukla PC, Gupta DK, Sharma RK, Nayak A, et al. Prevalence of subclinical mastitis in Cows in and around Jabalpur, Madhya Pradesh. Journal of Entomology and Zoology Studies 2020; 8: 40-44.
  • 2. Ashraf A, Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Animal Health Research Reviews 2020; 21: 36-49. doi: 10.1017/S1466252319000094.
  • 3. Rezanejad M, Karim S, Momtaz H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiology 2019; 19: 305. doi: 10.1186/s12866-019-1630-4.
  • 4. Song X, Huang X, Xu H, Zhang C, Chen S, et al. The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Veterinary Microbiology 2020; 247: 108757. doi: 10.1016/j.vetmic.2020.108757.
  • 5. dos Santos PJ, Ladeira SL, de Lima Gonzalez H, Dors GC, da Silva Nascente P. Bacteria From Bovine Mastitis: Survey And Literature Review. Congresso International Da Agroindustria. Second International Veterinary Internal Medicine Congress. September, 25-27, 2020; Recife-Brasil. doi: 10.31692/ICIAGRO.2020.0213.
  • 6. Heikkilä AM, Liski E, Pyörälä S, Taponen S. Pathogen-specific production losses in bovine mastitis. Journal of Dairy Science 2018; 101: 9493-9504. doi: 10.3168/jds.2018-14824.
  • 7. Abed AH, Menshawy AMS, Zeinhom MMA, Hossain D, Khalifa E, et al. Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021; 9: 1175. doi: 10.3390/microorganisms9061175.
  • 8. Al-Dabbagh SYA, Mahmmoud EN, Al-Chalaby AYH. Bacterial Bovine Mastitis In Iraq: A Review. Basrah Journal of Veterinary Research 2020; 19: 76-102.
  • 9. Mbindyo CM, Gitao GC, Mulei CM. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Hindawi Veterinary Medicine International 2020; 1-12. doi: 10.1155/2020/8831172.
  • 10. Motaung TE, Petrovski KR, Petzer IM, Thekisoe O, Tsilo TJ. Importance of bovine mastitis in Africa. Animal Health Research Reviews 2017; 18: 59-69. doi:10.1017/S1466252317000032.
  • 11. Choudhary J, Kashyap SK. Detection of mastitis pathogens by multiplex polymerase chain reaction. The Pharma Innovation Journal 2021; 10: 79-83.
  • 12. Sarma O, Hussain J. Bovine Mastitis: An Overview. Vigyan Varta 2021; 2: 54-59.
  • 13. Krishnamoorthy P, Suresh KP, Jayamma KS, Shome BR, Patil SS. et all. An Understanding of the Global Status of Major Bacterial Pathogens of Milk Concerning Bovine Mastitis: A Systematic Review and Meta-Analysis (Scientometrics). Pathogens 2021; 10: 545. doi: 10.3390/pathogens10050545.
  • 14. Aytekin Ö. Laktasyondaki Akut Mastitisli Süt İneklerinde Meme içi Uygualanan 1.kuşak Sefalosporin ve Proteolitik Enzim Kombinsayonun Tedavideki Etkinliğinin Araştırılması. Doktora Tezi, Yüzüncü Yıl Üniv Sağ Bil Ens, Van 2012; s. 97. (thesis in Turkish with an English abstract).
  • 15. Kibebew K. Bovine Mastitis: A Review of Causes and Epidemiological Point of View. Journal of Biology, Agriculture and Healthcare 2017; 7: 1-14.
  • 16. Argaw A. Review on Epidemiology of Clinical and Subclinical Mastitis on Dairy Cows. Food Science and Quality Management 2016; 52: 1-10.
  • 17. Teegegne DT, Mamo G, Waktole H, Messele YE. Molecular characterization of virulence factors in Staphylococcus aureus isolated from bovine subclinical mastitis in central Ethiopia. Annals of Microbiology 2021; 28: 1-15. doi: 10.1186/s13213-021-01639-3.
  • 18. Dorneles EMS, Fonseca MDAM, Abreu J.AP, Lage AP, Brito MAVP et all. Genetic diversity and antimicrobial resistance in Staphylococcus aureus and coagulase‐negative Staphylococcus isolates from bovine mastitis in Minas Gerais, Brazil. Microbiology Open 2019; 8: e00736. doi: 10.1002/mbo3.736.
  • 19. Tsuka T, Ozaki H, Saito D, Murase T, Okamoto Y, et al. Genetic Characterization of CTX-M-2-Producing Klebsiella pneumoniae and Klebsiella oxytoca Associated With Bovine Mastitis in Japan. Frontiers in Veterinary Science 2021; 8: 659222. doi: 10.3389/fvets.2021.659222.
  • 20. Monistero V, Barberio A, Cremonesi P, Castiglioni B, Morandi S, et al. Genotyping and Antimicrobial Susceptibility Profiling of Streptococcus uberis Isolated from a Clinical Bovine Mastitis Outbreak in a Dairy Farm. Antibiotics 2021; 10: 644. doi: 10.3390/antibiotics10060644.
  • 21. Sheela P, Shekar M, Isloor S, Rathnamma D, Veeregowda BM, et al. Randomly amplified polymorphic DNA analysis of Staphylococcus chromogenes isolated from bovine and bubaline mastitis in Karnataka. Veterinary World 2021; 14: 285-291. doi: 10.14202/vetworld.2021.285-291.
  • 22. Qu Y, Zhao H, Nobrega DB, Cobo ER, Han B, et al. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. Journal of Dairy Science 2019; 102: 1571-1583. doi: 10.3168/jds.2018-15136.
  • 23. Yang X, Wang D, Li J, Meng X, Wei Y, et al. Molecular Epidemiology and Characteristics of Streptococcus agalactiae Isolated from Bovine Mastitis in Large Dairy Herds of China. Pakistan Veterinary Journal 2020; 40: 301-306. doi: 10.29261/pakvetj/2020.025.
  • 24. Carvalho-Castro GA, Silva JR, Paiva LV, Custódio DAC, Moreira RO, et al. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Brazilian Journal of Microbiology 2017; 48: 551-559. doi: 10.1016/j.bjm.2017.02.004.
  • 25. Turk R, Rosic N, Kules J, Horvatic A, Gelemanovic A, et al. Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows. Journal of Proteomics 2021; 244: 104277. doi: 10.1016/j.jprot.2021.104277.
  • 26. Sertkol C. Sütçü İneklerde Akut Klinik Mastitislerde Meme İçi Ozon Tedavisinin İyileştirici Etkisi. Yüksek Lisans Tezi, MKÜ Sağ Bil Ens, Hatay 2016; s. 56. (thesis in Turkish with an English abstract).
  • 27. Singh K, Mishra KK, Shrivastava N, Jha AK, Ranjan R. Epidemiological Studies on Subclinical Mastitis in Dairy Cows of Rewa District of Madhya Pradesh. International Journal of Livestock Research 2021; 11: 58-64. doi: 10.5455/ijlr.20210102070053.
  • 28. Özdemir FÖ. Subklinik Mastitisli Sığırlardan Major Patojenlerin İzolasyonu ve Antibiyotiklere Duyarlılıklarının Belirlenmesi. Yüksek Lisans Tezi, ADÜ Sağ Bil Ens, Aydın 2018; s. 65. (thesis in Turkish with an English abstract).
  • 29. Jaeger S, Virchow F, Torgerson PR, Bischoff M, Biner B, et al. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis. Journal of Dairy Science 2017; 100: 7419-7426. doi: 10.3168/jds.2016-12446.
  • 30. Rudenko P, Sachivkina N, Vatnikov Y, Shabunin S, Engashev S, et al. Role of microorganisms isolated from cows with mastitis in Moscow region in biofilm formation. Veterinary World 2021; 14: 40-48. doi: 10.14202/vetworld.2021.40-48.
  • 31. Sharun K, Dhama K, Tiwari R, Gugjoo MB, Yatoo MI, et al. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly 2021; 41: 107-136. doi: 10.1080/01652176.2021.1882713.
  • 32. Özkan Ç. Aydın İli Söke İlçesinde Siyah-Alaca Sütçü İneklerde Subklnik Mastitis Prevalansının Belirlenmesi. Yüksek Lisans Tezi, ADÜ Sağ Bil Ens, Aydın 2020; s. 63. (thesis in Turkish with an English abstract).
  • 33. Dabele DT, Snr BMB, Admasu P, Gebremedhin EZ, Marami LM. Prevalence and Risk Factors of Mastitis and Isolation, Identification and Antibiogram of Staphylococcus Species from Mastitis Positive Zebu Cows in Toke Kutaye, Cheliya, and Dendi Districts, West Shewa Zone, Oromia, Ethiopia. Infection and Drug Resistance 2021; 14: 987-998. doi: 10.2147/IDR.S295257.
  • 34. Singh VK, Kumar A, Yadav SK. Antimicrobial susceptibility profiling of milk samples from bovine clinical mastitis. International Journal of Medical Microbiology and Tropical Diseases 2016; 2: 52-55. doi: 10.5958/2455-6807.2016.00004.0.
  • 35. Kurumisawa T, Kawai K, Shinozuka Y. Verification of a simplified disk diffusion method for antimicrobial susceptibility testing of bovine mastitis isolates. Japanese Journal of Veterinary Research 2021; 69: 135-143. doi: 10.14943/jjvr.69.2.135.
  • 36. Scott P. Mastitis Part 11 - Summer Mastitis in Cattle. NADIS Animal Health Skills 2021; 1-3.
  • 37. Bhatt S, Pradhan S, Roy K, Singh M, Dehariya P. Summer Mastitis-An Overview. Rasksha Technical Review 2020; 5: 14-15.
  • 38. Forbes A. Ectoparasites in dairy cattle: summer grazing precautions. Veterinary Times 2017; 47: 6-8.
  • 39. Madalcho EB. A Study on the Prevalence of Bovine Mastitis and Isolation of Major Pathogens Associated with it in and around Wolaita Sodo, Southern Ethiopia. International Journal of Research Studies in Biosciences 2019; 7: 40-48. doi: 10.20431/2349-0365.0702004.
  • 40. Rose L, Laishram M, Lalawmpuii H, Rungsung S, Anal W, et al. Summer Mastitis in Cows. The North-East Veterinarian 2017; 17: 23-25.
  • 41. Aghamohammadi M. Economic Impacts of Mastitis in Canadian Dairy Herds. Master's Thesis, Montreal University, Montreal 2017; p. 123.
  • 42. Angelopoulou A, Warda AK, Hill C, Ross RP. Non-antibiotic microbial solutions for bovine mastitis – live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology 2019; 45: 564-580. doi: 10.1080/1040841X.2019.1648381.
  • 43. Carrero L, Córdoba RG, Chirino-Zárraga C. Bovine Summer Mastitis During Venezuelan Rainy Season: Cases Reports At Yaracal, Falcon State. Revista Científica, FCV-LUZ 2017; 27: 351-358.
  • 44. Ibrahim N. Review on Mastitis and Its Economic Effect. Canadian Journal of Scientific Research 2017; 6: 13-22. doi: 10.5829/idosi.cjsr.2017.13.22
  • 45. Ishiyama D, Mizomoto T, Ueda C, Takagi N, Shimizu N, et al. Factors affecting the incidence and outcome of Trueperella pyogenes mastitis in cows. Journal of Veterinary Medical Science 2017; 79: 626-631. doi: 10.1292/jvms.16-0401.
  • 46. Jaln NVK, Bhagwan J. Mastitis Control through Dry Cow Therapy. Indian Farmer 2017; 4: 915-918.
  • 47. Biggs A. Update on dry cow therapy 2. measuring dry period performance. In Practice 2017; 39: 363-371. doi: 10.1136/inp.j3592.

The Role of Summer Mastitis in Bovine Mastitis

Year 2021, Volume: 2 Issue: 2, 85 - 95, 31.12.2021

Abstract

Mastitis is an infection that still maintains its prevalence in developed and developing countries. It is known that mastitis in cattle is not only an infection due to the mammary gland, but also negatively affects the dairy industry, reducing the quality and quantity of milk. Failure to develop management strategies, ensure ambient hygiene, follow structural changes in milk and lack of trained personnel as well as inability to make early diagnosis and treatment are among the predisposing factors. In general, the agents of mastitis are classified as contagious and environmental. Along with recent research, factors of summer mastitis are also included in this classification. Pathogenic microorganisms causing mastitis, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Klebsiella pneumoniae, and Proteus spp. consists of both Gram-positive and Gram-negative bacteria. It is seen that the microorganisms causing summer mastitis are Gram-positive, facultative anaerobic bacteria such as Trueperella pyogenes, Peptococcus indolicus, and Streptococcus dysgalactiae. Symptoms of mastitis include structural changes of milk, increased breast heat, pain and edema, while summer mastitis symptoms show malodorous discharge, especially due to the involvement of Hydrotaea irritans flies in the teat. Direct microbiological analysis of milk after organoleptic examination is essential for early diagnosis, treatment, management and prevention of mastitis. Analysis of antibiotic sensitivity along with isolation and identification of factors increases the effectiveness of the treatment. Monitoring daily milk texture, body condition of cattle as well as conducting sanitation of farm are important to prevent mastitis. Use of pouring or spray preparations for fly control from july to september, post-milking hygiene and application of teat fillers are important in preventing summer mastitis. As a result, summer mastitis, which is included in mastitis, should be included in the general assessment of bovine mastitis. Dissemination of pre- and post-treatment microbiological analyzes of mastitis maintains its importance.

References

  • 1. Mourya A, Shukla PC, Gupta DK, Sharma RK, Nayak A, et al. Prevalence of subclinical mastitis in Cows in and around Jabalpur, Madhya Pradesh. Journal of Entomology and Zoology Studies 2020; 8: 40-44.
  • 2. Ashraf A, Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Animal Health Research Reviews 2020; 21: 36-49. doi: 10.1017/S1466252319000094.
  • 3. Rezanejad M, Karim S, Momtaz H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiology 2019; 19: 305. doi: 10.1186/s12866-019-1630-4.
  • 4. Song X, Huang X, Xu H, Zhang C, Chen S, et al. The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Veterinary Microbiology 2020; 247: 108757. doi: 10.1016/j.vetmic.2020.108757.
  • 5. dos Santos PJ, Ladeira SL, de Lima Gonzalez H, Dors GC, da Silva Nascente P. Bacteria From Bovine Mastitis: Survey And Literature Review. Congresso International Da Agroindustria. Second International Veterinary Internal Medicine Congress. September, 25-27, 2020; Recife-Brasil. doi: 10.31692/ICIAGRO.2020.0213.
  • 6. Heikkilä AM, Liski E, Pyörälä S, Taponen S. Pathogen-specific production losses in bovine mastitis. Journal of Dairy Science 2018; 101: 9493-9504. doi: 10.3168/jds.2018-14824.
  • 7. Abed AH, Menshawy AMS, Zeinhom MMA, Hossain D, Khalifa E, et al. Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021; 9: 1175. doi: 10.3390/microorganisms9061175.
  • 8. Al-Dabbagh SYA, Mahmmoud EN, Al-Chalaby AYH. Bacterial Bovine Mastitis In Iraq: A Review. Basrah Journal of Veterinary Research 2020; 19: 76-102.
  • 9. Mbindyo CM, Gitao GC, Mulei CM. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Hindawi Veterinary Medicine International 2020; 1-12. doi: 10.1155/2020/8831172.
  • 10. Motaung TE, Petrovski KR, Petzer IM, Thekisoe O, Tsilo TJ. Importance of bovine mastitis in Africa. Animal Health Research Reviews 2017; 18: 59-69. doi:10.1017/S1466252317000032.
  • 11. Choudhary J, Kashyap SK. Detection of mastitis pathogens by multiplex polymerase chain reaction. The Pharma Innovation Journal 2021; 10: 79-83.
  • 12. Sarma O, Hussain J. Bovine Mastitis: An Overview. Vigyan Varta 2021; 2: 54-59.
  • 13. Krishnamoorthy P, Suresh KP, Jayamma KS, Shome BR, Patil SS. et all. An Understanding of the Global Status of Major Bacterial Pathogens of Milk Concerning Bovine Mastitis: A Systematic Review and Meta-Analysis (Scientometrics). Pathogens 2021; 10: 545. doi: 10.3390/pathogens10050545.
  • 14. Aytekin Ö. Laktasyondaki Akut Mastitisli Süt İneklerinde Meme içi Uygualanan 1.kuşak Sefalosporin ve Proteolitik Enzim Kombinsayonun Tedavideki Etkinliğinin Araştırılması. Doktora Tezi, Yüzüncü Yıl Üniv Sağ Bil Ens, Van 2012; s. 97. (thesis in Turkish with an English abstract).
  • 15. Kibebew K. Bovine Mastitis: A Review of Causes and Epidemiological Point of View. Journal of Biology, Agriculture and Healthcare 2017; 7: 1-14.
  • 16. Argaw A. Review on Epidemiology of Clinical and Subclinical Mastitis on Dairy Cows. Food Science and Quality Management 2016; 52: 1-10.
  • 17. Teegegne DT, Mamo G, Waktole H, Messele YE. Molecular characterization of virulence factors in Staphylococcus aureus isolated from bovine subclinical mastitis in central Ethiopia. Annals of Microbiology 2021; 28: 1-15. doi: 10.1186/s13213-021-01639-3.
  • 18. Dorneles EMS, Fonseca MDAM, Abreu J.AP, Lage AP, Brito MAVP et all. Genetic diversity and antimicrobial resistance in Staphylococcus aureus and coagulase‐negative Staphylococcus isolates from bovine mastitis in Minas Gerais, Brazil. Microbiology Open 2019; 8: e00736. doi: 10.1002/mbo3.736.
  • 19. Tsuka T, Ozaki H, Saito D, Murase T, Okamoto Y, et al. Genetic Characterization of CTX-M-2-Producing Klebsiella pneumoniae and Klebsiella oxytoca Associated With Bovine Mastitis in Japan. Frontiers in Veterinary Science 2021; 8: 659222. doi: 10.3389/fvets.2021.659222.
  • 20. Monistero V, Barberio A, Cremonesi P, Castiglioni B, Morandi S, et al. Genotyping and Antimicrobial Susceptibility Profiling of Streptococcus uberis Isolated from a Clinical Bovine Mastitis Outbreak in a Dairy Farm. Antibiotics 2021; 10: 644. doi: 10.3390/antibiotics10060644.
  • 21. Sheela P, Shekar M, Isloor S, Rathnamma D, Veeregowda BM, et al. Randomly amplified polymorphic DNA analysis of Staphylococcus chromogenes isolated from bovine and bubaline mastitis in Karnataka. Veterinary World 2021; 14: 285-291. doi: 10.14202/vetworld.2021.285-291.
  • 22. Qu Y, Zhao H, Nobrega DB, Cobo ER, Han B, et al. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. Journal of Dairy Science 2019; 102: 1571-1583. doi: 10.3168/jds.2018-15136.
  • 23. Yang X, Wang D, Li J, Meng X, Wei Y, et al. Molecular Epidemiology and Characteristics of Streptococcus agalactiae Isolated from Bovine Mastitis in Large Dairy Herds of China. Pakistan Veterinary Journal 2020; 40: 301-306. doi: 10.29261/pakvetj/2020.025.
  • 24. Carvalho-Castro GA, Silva JR, Paiva LV, Custódio DAC, Moreira RO, et al. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Brazilian Journal of Microbiology 2017; 48: 551-559. doi: 10.1016/j.bjm.2017.02.004.
  • 25. Turk R, Rosic N, Kules J, Horvatic A, Gelemanovic A, et al. Milk and serum proteomes in subclinical and clinical mastitis in Simmental cows. Journal of Proteomics 2021; 244: 104277. doi: 10.1016/j.jprot.2021.104277.
  • 26. Sertkol C. Sütçü İneklerde Akut Klinik Mastitislerde Meme İçi Ozon Tedavisinin İyileştirici Etkisi. Yüksek Lisans Tezi, MKÜ Sağ Bil Ens, Hatay 2016; s. 56. (thesis in Turkish with an English abstract).
  • 27. Singh K, Mishra KK, Shrivastava N, Jha AK, Ranjan R. Epidemiological Studies on Subclinical Mastitis in Dairy Cows of Rewa District of Madhya Pradesh. International Journal of Livestock Research 2021; 11: 58-64. doi: 10.5455/ijlr.20210102070053.
  • 28. Özdemir FÖ. Subklinik Mastitisli Sığırlardan Major Patojenlerin İzolasyonu ve Antibiyotiklere Duyarlılıklarının Belirlenmesi. Yüksek Lisans Tezi, ADÜ Sağ Bil Ens, Aydın 2018; s. 65. (thesis in Turkish with an English abstract).
  • 29. Jaeger S, Virchow F, Torgerson PR, Bischoff M, Biner B, et al. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis. Journal of Dairy Science 2017; 100: 7419-7426. doi: 10.3168/jds.2016-12446.
  • 30. Rudenko P, Sachivkina N, Vatnikov Y, Shabunin S, Engashev S, et al. Role of microorganisms isolated from cows with mastitis in Moscow region in biofilm formation. Veterinary World 2021; 14: 40-48. doi: 10.14202/vetworld.2021.40-48.
  • 31. Sharun K, Dhama K, Tiwari R, Gugjoo MB, Yatoo MI, et al. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Veterinary Quarterly 2021; 41: 107-136. doi: 10.1080/01652176.2021.1882713.
  • 32. Özkan Ç. Aydın İli Söke İlçesinde Siyah-Alaca Sütçü İneklerde Subklnik Mastitis Prevalansının Belirlenmesi. Yüksek Lisans Tezi, ADÜ Sağ Bil Ens, Aydın 2020; s. 63. (thesis in Turkish with an English abstract).
  • 33. Dabele DT, Snr BMB, Admasu P, Gebremedhin EZ, Marami LM. Prevalence and Risk Factors of Mastitis and Isolation, Identification and Antibiogram of Staphylococcus Species from Mastitis Positive Zebu Cows in Toke Kutaye, Cheliya, and Dendi Districts, West Shewa Zone, Oromia, Ethiopia. Infection and Drug Resistance 2021; 14: 987-998. doi: 10.2147/IDR.S295257.
  • 34. Singh VK, Kumar A, Yadav SK. Antimicrobial susceptibility profiling of milk samples from bovine clinical mastitis. International Journal of Medical Microbiology and Tropical Diseases 2016; 2: 52-55. doi: 10.5958/2455-6807.2016.00004.0.
  • 35. Kurumisawa T, Kawai K, Shinozuka Y. Verification of a simplified disk diffusion method for antimicrobial susceptibility testing of bovine mastitis isolates. Japanese Journal of Veterinary Research 2021; 69: 135-143. doi: 10.14943/jjvr.69.2.135.
  • 36. Scott P. Mastitis Part 11 - Summer Mastitis in Cattle. NADIS Animal Health Skills 2021; 1-3.
  • 37. Bhatt S, Pradhan S, Roy K, Singh M, Dehariya P. Summer Mastitis-An Overview. Rasksha Technical Review 2020; 5: 14-15.
  • 38. Forbes A. Ectoparasites in dairy cattle: summer grazing precautions. Veterinary Times 2017; 47: 6-8.
  • 39. Madalcho EB. A Study on the Prevalence of Bovine Mastitis and Isolation of Major Pathogens Associated with it in and around Wolaita Sodo, Southern Ethiopia. International Journal of Research Studies in Biosciences 2019; 7: 40-48. doi: 10.20431/2349-0365.0702004.
  • 40. Rose L, Laishram M, Lalawmpuii H, Rungsung S, Anal W, et al. Summer Mastitis in Cows. The North-East Veterinarian 2017; 17: 23-25.
  • 41. Aghamohammadi M. Economic Impacts of Mastitis in Canadian Dairy Herds. Master's Thesis, Montreal University, Montreal 2017; p. 123.
  • 42. Angelopoulou A, Warda AK, Hill C, Ross RP. Non-antibiotic microbial solutions for bovine mastitis – live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology 2019; 45: 564-580. doi: 10.1080/1040841X.2019.1648381.
  • 43. Carrero L, Córdoba RG, Chirino-Zárraga C. Bovine Summer Mastitis During Venezuelan Rainy Season: Cases Reports At Yaracal, Falcon State. Revista Científica, FCV-LUZ 2017; 27: 351-358.
  • 44. Ibrahim N. Review on Mastitis and Its Economic Effect. Canadian Journal of Scientific Research 2017; 6: 13-22. doi: 10.5829/idosi.cjsr.2017.13.22
  • 45. Ishiyama D, Mizomoto T, Ueda C, Takagi N, Shimizu N, et al. Factors affecting the incidence and outcome of Trueperella pyogenes mastitis in cows. Journal of Veterinary Medical Science 2017; 79: 626-631. doi: 10.1292/jvms.16-0401.
  • 46. Jaln NVK, Bhagwan J. Mastitis Control through Dry Cow Therapy. Indian Farmer 2017; 4: 915-918.
  • 47. Biggs A. Update on dry cow therapy 2. measuring dry period performance. In Practice 2017; 39: 363-371. doi: 10.1136/inp.j3592.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Reviews
Authors

Ayşe Birsen Gökalp 0000-0002-3405-6040

Publication Date December 31, 2021
Submission Date October 11, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

Vancouver Gökalp AB. Sığır Mastitislerinde Yaz Mastitisinin Yeri. Bozok Vet Sci. 2021;2(2):85-9.