Review
BibTex RIS Cite

Metilglioksal ve İleri Glikasyon Son Ürünleri

Year 2020, Volume: 1 Issue: 1-2, 74 - 79, 15.12.2020

Abstract

“Metilglioksal” MGO, oldukça reaktif bir karbonil türüdür. Diabet, kanser ve nörodejeneratif hastalıklar dahil, yaşlanmayla ilişkili çoğu hastalıktaki rolü nedeniyle son yıllarda artan bilimsel ilgi görmektedir. MGO ile birlikte diğer dikarbonil bileşikleri olan “glioksal” GO, 3-deoksiglukozun yeterince metabolize edilememeleri, ortaya dikarbonil stresi olarak adlandırılan toksik tablo çıkarmaktadır. Dikarbonil bileşikleri, “ileri glikasyon ürünleri-advanced glycation end products” AGE ve ileri lipit peroksidasyon ürünleri “advanced lipid peroxidation end products” ALE oluşumunda son derece etkindirler. Canlılarda gelişen glikasyona karşı glioksalaz, aldehid dehidrogenaz, aldozredüktaz, ve karbonil redüktaz yolakları MGO oluşumuna karşı geliştirilen savunma mekanizmalarıdır. Glioksalaz sistemi hücrelerde MGO ve diğer reaktif karbonil bileşiklere karşı kullanılan başlıca detoksifikasyon sistemi olarak önemli rol oynamaktadır. Organizmada endojen olarak maillard reaksiyonu neticesi ortaya çıkan AGE’lerin haricinde, eksojen olarak gıda kaynaklı olarak da AGE’lere rastlanılmaktadır. Gıdalar üzerinde yapılan ısıl işlemlere dair uygulamalar da MGO oluşumunu katalizlemektedir. Evcil hayvan mamalarında da bulunduğu bildirilen “maillard reaction products” MRP ve AGE içerikleri de insanlardakine benzer olumsuz tabloya neden olabilmektedir. Ancak diyet MRP'nin evcil hayvanların uzun vadeli sağlığını etkileyip etkilemediği şimdiye kadar yeterince araştırılmamıştır.

References

  • 1. Maessen DE, Stehouwer CD, Schalkwijk CG. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clinical Science 2015; 128: 839-861.
  • 2. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metabolism 2018; 28:337-352.
  • 3. Nigro C, Leone A, Fiory F, Prevenzano I, Nicolò A, Mirra P, Beguinot F, Miele C. Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8: 749.
  • 4. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochemical and Biophysical Research Communications 2015; 458: 221-226.
  • 5. Kırça M. Primer vasküler düz kas hücrelerinde hipergliseminin ve anjiyotensin ii’nin metilglioksal ve glioksalaz 1 üzerine etkisi. Doktora Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2019.
  • 6. Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiological Research / Academia Scientiarum Bohemoslovaca 2010; 59: 147-156.
  • 7. Talukdar D, Chaudhuri BS, Ray M, Ray S. Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry (Mosc) 2009; 74: 1059-1069.
  • 8. Yılmaz Z. Kronik metilglioksal uygulamasi ile siçanlarin kan ve dokularinda oluşan oksidatif değişimler üzerine karnozin ve resveratrolün etkileri, Yüksek Lisans Tezi, İstanbul Üniv Sağ Bil Enst, İstanbul, 2015.
  • 9. Erylmaz K. Sıçanlarda metilglioksal uygulamasiyla oluşan erektil disfonksiyona levosetirizin uygulamasının etkisi, Yüksek Lisans Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2019.
  • 10. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Wu L. Oxidative stress and aging: Is methylglyoxal the hidden enemy? Canadian Journal of Physiology and Pharmacology 2010; 88: 273–284.
  • 11. Desai K, Wu L. Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Patents on Cardiovascular Drug Discovery 2007; 2: 89–99.
  • 12. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2: 1247-1265.
  • 13. Ramasamy R, Yan SF, Schmidt AM. Methylglyoxal comes of AGE. Cell 2006; 124: 258-260.
  • 14. Jaisson S, Gillery P, Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clinical Chemistry 2010; 56: 1401-1412.
  • 15. Rabbani N, Adaikalakoteswari A, Rossing K, Rossing P, Tarnow L, Parving HH, Thornalley PJ. Effect of irbesartan treatment on plasma and urinary markers of protein damage in patients with type 2 diabetes and microalbuminuria. Amino Acids 2012; 42: 1627-1639.
  • 16. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Research 2006; 9:264–273.
  • 17. Habtemariam S. Pathophysiology of type 2 diabetes complications, Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, Academic Press 2019, 69-88.
  • 18. Chang, T, and Wu, L. Methylglyoxal, oxidative stress, and hypertension. Canadian Journal of Physiology and Pharmacology 2006; 84: 1229–1238.
  • 19. Bakırcı E. Sıçanlarda metilglioksal uygulamasiyla oluşan erektil disfonksiyona pravastatin tedavisinin etkisi, Yüksek Lisans Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2018.
  • 20. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J. Vlassara H. Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association 2004; 104: 1287-1291.
  • 21. Almeida FN. Effects of the Maillard Reactions on Chemical Composition and Amino Acid Digestibility of Feed Ingredients and on Pig Growth Performance. PhD Thesis, University of Illinois, 2013.
  • 22. Almeida FN, Htoo JK, Thomson J, Stein HH. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs. Animal 2014; 8:1594–1602.
  • 23. Tessier FJ, Birlouez-Aragon I. Health effects of dietary Maillard reaction products: the results of ICARE and other studies. Amino Acids 2012; 42:1119–1131.
  • 24. Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathologie Biologie 2010; 58:214–219.
  • 25. Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs). Frontiers in Immunology 2018; 208.
  • 26. Nass N, Bartling B, Navarrete Santos A, Scheubel RJ, Borgermann J, Silber RE, et al. Advanced glycation end products, diabetes and ageing. Zeitschrift für Gerontologie und Geriatrie 2007; 40:319–356.
  • 27. Comazzi S, Bertazzolo W, Bonfanti U, Spagnolo V, Sartorelli P. Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs. Research in Veterinary Science 2008; 84:341–346.
  • 28. Bras ID, Colitz CMH, Kusewitt DF, Chandler H, Lu P, Gemensky-Metzler AJ, et al. Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts. Graefe's Archive for Clinical and Experimental Ophthalmology 2007; 245:249–257.
  • 29. Ramasamy R, Vannucci J, Yan D, Herold K, Yan F, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15-16.
  • 30. De Groot J, Verzijl N, Wenting-van Wijk MJG, Jacobs KMG, Van El B, Van Roermund PM, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis and Rheumatism 2004; 50:1207–1215.
  • 31. Chiers K, Vandenberge V, Ducatelle R. Accumulation of advanced glycation end products in canine atherosclerosis. Journal of Comparative Pathology 2010; 143:65–69.
  • 32. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. The Journals Of Gerontology. Series A, Biological Sciences and Medical Sciences 2007; 62:427–433.
  • 33. Baynes JW, Gillery P. Frontiers in research on the Maillard reaction in aging and chronic disease. Clinical Chemistry and Laboratory Medicine 2014; 52:1–3.
  • 34. Robert L, Labat-Robert J. Role of the Maillard reaction in aging and age-related diseases. Studies at the cellular-molecular level. Clinical Chemistry and Laboratory Medicine 2014; 52:5–10.
  • 35. Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 2014; 111:4940–4945.
  • 36. Monnier VM, Taniguchi N. Advanced glycation in diabetes, aging and age-related diseases: conclusions. Glycoconjugate Journal 2016; 33:691–692.
  • 37. Schwarzenbolz U, Hofmann T, Sparmann N, Henle T. Free Maillard reaction products in milk reflect nutritional intake of glycated proteins and can be used to distinguish “organic” and “conventionally” produced milk. Journal of Agricultural and Food Chemistry 2016; 64:5071–5078.
  • 38. Tamime AY. Dairy technology-principles of milk properties and processes. International Journal of Dairy Technology 2007; 60:154.
  • 39. Haskell MJ, Rennie LJ, Bowell VA, Bell MJ, Lawrence AB. Housing system, milk production, and zero-grazing effects on lameness and leg injury in dairy cows. Journal of Dairy Science 2006; 89:4259–4266.
  • 40. Tuohy KM, Hinton DJ, Davies SJ, Crabbe MJ, Gibson GR, Ames JM. Metabolism of maillard reaction products by the human gut microbiota - implications for health. Molecular Nutrition & Food Research 2006; 50:847–857.
  • 41. Bach A, Dinares M, Devant M, Carre X. Associations between lameness and production, feeding and milking attendance of Holstein cows milked with an automatic milking system. The Journal of Dairy Research 2007; 74:40–46.
  • 42. Cooper RA, Anderson A. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. Federation of European Biochemical Societies Letters 1970; 110:273–276.
  • 43. Ackerman RS, Cozzarelli NR, Epstein W. Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12. Journal of Bacteriology 1974; 119:357–362.
  • 44. Semba RD, Ang A, Talegawkar S, Crasto C, Dalal M, Jardack P, Traber MG, Ferrucci L, Arab L. Dietary intake associated with serum versus urinary carboxymethyl-lysine, a major advanced glycation end product, in adults: the Energetics Study. European Journal of Clinical Nutrition 2012; 66: 3-9.
  • 45. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, Lee A, Al-Abed Y, Vlassara H, Bucala R, Cerami A. Tobacco smoke is a source of toxic reactive glycation products. Proceedings of the National Academy of Sciences 1997; 94: 13915-13920.
  • 46. Thornalley PJ. The glyoxalase system in health and disease. Molecular Aspects Of Medicine 1993; 14: 287–371.
  • 47. Reiniger N, Lau K, McCalla D, Eby B, Cheng B, Lu Y, Schmidt AM. Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic ove26 mouse. Diabetes 2010; 59: 2043-2054.
  • 48. Zeng S, Zhang QY, Huang J, Vedantham S, Rosario R, Ananthakrishnan R, Schmidt AM. Opposing roles of rage and myd88 signaling in extensive liver resection. FASEB Journal 2012; 26: 882-893.
  • 49. Villanueva M. Glyoxalase 1 Attenuates the Effects of Chronic Hyperglycemia on Explant-Derived Cardiac Stem Cells. Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Faculty of Medicine. 2017; 17.
  • 50. Xue, M., Rabbani, N., & Thornalley, P. J. Glyoxalase in ageing. Seminars in Cell & Developmental Biology 2011; 22: 293-301.
  • 51. Kim MJ, Kim DW, Lee BR, Shin MJ, Kim YN, Eom SA, Choi SY. Transduced tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model. Biochemical and Biophysical Research Communications 2013; 430: 294-300.
  • 52. Giacco F, Du X, D'Agati VD, Milne R, Sui G, Geoffrion M, Brownlee M. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 2014; 63: 291-299.
  • 53. McLellan AC, Thornalley PJ, Benn J, Sonksen, PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clinical Science (Lond) 1994; 87: 21-29.
  • 54. Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Seminars in Cell & Developmental Biology 2011; 22: 309-317.
  • 55. Rabbani N, Thornalley PJ. Glyoxalase centennial conference: Introduction, history of research on the glyoxalase system and future prospects. Biochemical Society Transactions 2014; 42: 413-418.
Year 2020, Volume: 1 Issue: 1-2, 74 - 79, 15.12.2020

Abstract

References

  • 1. Maessen DE, Stehouwer CD, Schalkwijk CG. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clinical Science 2015; 128: 839-861.
  • 2. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metabolism 2018; 28:337-352.
  • 3. Nigro C, Leone A, Fiory F, Prevenzano I, Nicolò A, Mirra P, Beguinot F, Miele C. Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging. Cells 2019; 8: 749.
  • 4. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochemical and Biophysical Research Communications 2015; 458: 221-226.
  • 5. Kırça M. Primer vasküler düz kas hücrelerinde hipergliseminin ve anjiyotensin ii’nin metilglioksal ve glioksalaz 1 üzerine etkisi. Doktora Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2019.
  • 6. Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiological Research / Academia Scientiarum Bohemoslovaca 2010; 59: 147-156.
  • 7. Talukdar D, Chaudhuri BS, Ray M, Ray S. Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry (Mosc) 2009; 74: 1059-1069.
  • 8. Yılmaz Z. Kronik metilglioksal uygulamasi ile siçanlarin kan ve dokularinda oluşan oksidatif değişimler üzerine karnozin ve resveratrolün etkileri, Yüksek Lisans Tezi, İstanbul Üniv Sağ Bil Enst, İstanbul, 2015.
  • 9. Erylmaz K. Sıçanlarda metilglioksal uygulamasiyla oluşan erektil disfonksiyona levosetirizin uygulamasının etkisi, Yüksek Lisans Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2019.
  • 10. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Wu L. Oxidative stress and aging: Is methylglyoxal the hidden enemy? Canadian Journal of Physiology and Pharmacology 2010; 88: 273–284.
  • 11. Desai K, Wu L. Methylglyoxal and advanced glycation endproducts: new therapeutic horizons? Recent Patents on Cardiovascular Drug Discovery 2007; 2: 89–99.
  • 12. Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2: 1247-1265.
  • 13. Ramasamy R, Yan SF, Schmidt AM. Methylglyoxal comes of AGE. Cell 2006; 124: 258-260.
  • 14. Jaisson S, Gillery P, Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clinical Chemistry 2010; 56: 1401-1412.
  • 15. Rabbani N, Adaikalakoteswari A, Rossing K, Rossing P, Tarnow L, Parving HH, Thornalley PJ. Effect of irbesartan treatment on plasma and urinary markers of protein damage in patients with type 2 diabetes and microalbuminuria. Amino Acids 2012; 42: 1627-1639.
  • 16. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Research 2006; 9:264–273.
  • 17. Habtemariam S. Pathophysiology of type 2 diabetes complications, Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases, Academic Press 2019, 69-88.
  • 18. Chang, T, and Wu, L. Methylglyoxal, oxidative stress, and hypertension. Canadian Journal of Physiology and Pharmacology 2006; 84: 1229–1238.
  • 19. Bakırcı E. Sıçanlarda metilglioksal uygulamasiyla oluşan erektil disfonksiyona pravastatin tedavisinin etkisi, Yüksek Lisans Tezi, Akdeniz Üniv Sağ Bil Enst, Antalya, 2018.
  • 20. Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J. Vlassara H. Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association 2004; 104: 1287-1291.
  • 21. Almeida FN. Effects of the Maillard Reactions on Chemical Composition and Amino Acid Digestibility of Feed Ingredients and on Pig Growth Performance. PhD Thesis, University of Illinois, 2013.
  • 22. Almeida FN, Htoo JK, Thomson J, Stein HH. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs. Animal 2014; 8:1594–1602.
  • 23. Tessier FJ, Birlouez-Aragon I. Health effects of dietary Maillard reaction products: the results of ICARE and other studies. Amino Acids 2012; 42:1119–1131.
  • 24. Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathologie Biologie 2010; 58:214–219.
  • 25. Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs). Frontiers in Immunology 2018; 208.
  • 26. Nass N, Bartling B, Navarrete Santos A, Scheubel RJ, Borgermann J, Silber RE, et al. Advanced glycation end products, diabetes and ageing. Zeitschrift für Gerontologie und Geriatrie 2007; 40:319–356.
  • 27. Comazzi S, Bertazzolo W, Bonfanti U, Spagnolo V, Sartorelli P. Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs. Research in Veterinary Science 2008; 84:341–346.
  • 28. Bras ID, Colitz CMH, Kusewitt DF, Chandler H, Lu P, Gemensky-Metzler AJ, et al. Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts. Graefe's Archive for Clinical and Experimental Ophthalmology 2007; 245:249–257.
  • 29. Ramasamy R, Vannucci J, Yan D, Herold K, Yan F, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15-16.
  • 30. De Groot J, Verzijl N, Wenting-van Wijk MJG, Jacobs KMG, Van El B, Van Roermund PM, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis and Rheumatism 2004; 50:1207–1215.
  • 31. Chiers K, Vandenberge V, Ducatelle R. Accumulation of advanced glycation end products in canine atherosclerosis. Journal of Comparative Pathology 2010; 143:65–69.
  • 32. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. The Journals Of Gerontology. Series A, Biological Sciences and Medical Sciences 2007; 62:427–433.
  • 33. Baynes JW, Gillery P. Frontiers in research on the Maillard reaction in aging and chronic disease. Clinical Chemistry and Laboratory Medicine 2014; 52:1–3.
  • 34. Robert L, Labat-Robert J. Role of the Maillard reaction in aging and age-related diseases. Studies at the cellular-molecular level. Clinical Chemistry and Laboratory Medicine 2014; 52:5–10.
  • 35. Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America 2014; 111:4940–4945.
  • 36. Monnier VM, Taniguchi N. Advanced glycation in diabetes, aging and age-related diseases: conclusions. Glycoconjugate Journal 2016; 33:691–692.
  • 37. Schwarzenbolz U, Hofmann T, Sparmann N, Henle T. Free Maillard reaction products in milk reflect nutritional intake of glycated proteins and can be used to distinguish “organic” and “conventionally” produced milk. Journal of Agricultural and Food Chemistry 2016; 64:5071–5078.
  • 38. Tamime AY. Dairy technology-principles of milk properties and processes. International Journal of Dairy Technology 2007; 60:154.
  • 39. Haskell MJ, Rennie LJ, Bowell VA, Bell MJ, Lawrence AB. Housing system, milk production, and zero-grazing effects on lameness and leg injury in dairy cows. Journal of Dairy Science 2006; 89:4259–4266.
  • 40. Tuohy KM, Hinton DJ, Davies SJ, Crabbe MJ, Gibson GR, Ames JM. Metabolism of maillard reaction products by the human gut microbiota - implications for health. Molecular Nutrition & Food Research 2006; 50:847–857.
  • 41. Bach A, Dinares M, Devant M, Carre X. Associations between lameness and production, feeding and milking attendance of Holstein cows milked with an automatic milking system. The Journal of Dairy Research 2007; 74:40–46.
  • 42. Cooper RA, Anderson A. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. Federation of European Biochemical Societies Letters 1970; 110:273–276.
  • 43. Ackerman RS, Cozzarelli NR, Epstein W. Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12. Journal of Bacteriology 1974; 119:357–362.
  • 44. Semba RD, Ang A, Talegawkar S, Crasto C, Dalal M, Jardack P, Traber MG, Ferrucci L, Arab L. Dietary intake associated with serum versus urinary carboxymethyl-lysine, a major advanced glycation end product, in adults: the Energetics Study. European Journal of Clinical Nutrition 2012; 66: 3-9.
  • 45. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, Lee A, Al-Abed Y, Vlassara H, Bucala R, Cerami A. Tobacco smoke is a source of toxic reactive glycation products. Proceedings of the National Academy of Sciences 1997; 94: 13915-13920.
  • 46. Thornalley PJ. The glyoxalase system in health and disease. Molecular Aspects Of Medicine 1993; 14: 287–371.
  • 47. Reiniger N, Lau K, McCalla D, Eby B, Cheng B, Lu Y, Schmidt AM. Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic ove26 mouse. Diabetes 2010; 59: 2043-2054.
  • 48. Zeng S, Zhang QY, Huang J, Vedantham S, Rosario R, Ananthakrishnan R, Schmidt AM. Opposing roles of rage and myd88 signaling in extensive liver resection. FASEB Journal 2012; 26: 882-893.
  • 49. Villanueva M. Glyoxalase 1 Attenuates the Effects of Chronic Hyperglycemia on Explant-Derived Cardiac Stem Cells. Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Faculty of Medicine. 2017; 17.
  • 50. Xue, M., Rabbani, N., & Thornalley, P. J. Glyoxalase in ageing. Seminars in Cell & Developmental Biology 2011; 22: 293-301.
  • 51. Kim MJ, Kim DW, Lee BR, Shin MJ, Kim YN, Eom SA, Choi SY. Transduced tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model. Biochemical and Biophysical Research Communications 2013; 430: 294-300.
  • 52. Giacco F, Du X, D'Agati VD, Milne R, Sui G, Geoffrion M, Brownlee M. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 2014; 63: 291-299.
  • 53. McLellan AC, Thornalley PJ, Benn J, Sonksen, PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clinical Science (Lond) 1994; 87: 21-29.
  • 54. Rabbani N, Thornalley PJ. Glyoxalase in diabetes, obesity and related disorders. Seminars in Cell & Developmental Biology 2011; 22: 309-317.
  • 55. Rabbani N, Thornalley PJ. Glyoxalase centennial conference: Introduction, history of research on the glyoxalase system and future prospects. Biochemical Society Transactions 2014; 42: 413-418.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Reviews
Authors

Sinan Vıcıl This is me 0000-0002-0444-4771

Elmas Ulutaş This is me 0000-0002-5552-3939

Publication Date December 15, 2020
Submission Date November 29, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1-2

Cite

Vancouver Vıcıl S, Ulutaş E. Metilglioksal ve İleri Glikasyon Son Ürünleri. Bozok Vet Sci. 2020;1(1-2):74-9.