Research Article
BibTex RIS Cite

Investigation of Newly Designed Scaffolds in Bone Cartilage Tissue Defects

Year 2024, , 752 - 755, 15.07.2024
https://doi.org/10.34248/bsengineering.1492107

Abstract

Bone tissue is a structure composed of organic and inorganic components. There are problems with the fracture of bone tissue. The fracture healing and rehabilitation are a long term processes for various reasons. Complications of bone fractures include delayed healing, bone nonunion, and infections. Studies conducted in recent years have directed orthopedic surgeons to cellular therapy and biomaterials. Our study investigated loofah, PRP, and chondrocyte (cartilage cell) scaffolds for in vivo healing. The study was carried out on rabbits randomly divided into 4 groups. Animals were sacrificed 8 weeks after implant surgery by applying high-dose anesthesia. Histological analyses were performed on samples from animals sacrificed in week 8 after implant surgery. Our results showed that loofah+PRP+chondrocyte cell scaffolds are biocompatible and an excellent alternative to remedial engineering.

References

  • Alshammari A, Alabdah F, Wang W, Cooper G. 2023. Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: Relationship of scaffold pore architecture to bone tissue formation. Polymers, 15(19): 3918.
  • Baysan G, Colpankan Gunes O, Akokay P, Husemoglu RB, Ertugruloglu P, Ziylan Albayrak A, Havitcioglu H. 2022. Loofah-chitosan and poly (−3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol, 221: 1171-1183.
  • Baysan G, Gunes O C, Turemis C, Akokay Yilmaz P, Husemoglu R B, Kara Ozenler A, Cecen B. 2023. Using loofah reinforced chitosan-collagen hydrogel based scaffolds in-vitro and in-vivo; healing in cartilage tissue defects. Materialia, 31: 101881.
  • Blazquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. 2023. Mechanics predicts effective critical-size bone regeneration using 3d-printed bioceramic scaffolds. Tissue Eng Regen Med, 20(6): 893-904.
  • Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. 2023. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol, 257(Pt 1):128593.
  • Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Ding C. 2023. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules, 28(20): 7039.
  • Göransson H. 1993. Callus formation after re-injury to experimental bone defect. Arch Orthop Trauma Surg, 112(5): 232-235.
  • Han W, He W, Yang W, Li J, Yang Z, Lu X, Qian Y. 2016. The osteogenic potential of human bone callus. Sci Rep, 6(1): 36330.
  • Li H, Hu C, Yu H, Chen C. 2018. Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Adv, 8(7): 3736-3749.
  • Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. 2013. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics, 36(11): 868-873.
  • Liu Q, Liu Z, Guo H, Liang J, Zhang Y. 2022. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskeletal Disord, 23(1): 490.
  • Mito K, Lachnish J, Le W, Chan C, Chang Y L, Yao J 2023. Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model. Tissue Eng Part A, 30(3-4):107-114.
  • Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Ding J. 2023. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 3: 20210043.
  • Ramzan F, Salim A, Khan I. 2023. Osteochondral tissue engineering dilemma: Scaffolding trends in regenerative medicine. Stem Cell Rev Rep, 19(6): 1615-1634.
  • Sakeena Q, Makhdoomi DM, Rather SA, Parrah JUD, Dar SH, Gugjoo MB. 2023. Radiographic evaluation of healing potential of stem cell-loaded scaffold in experimental bone defect. SKUAST J Res, 25(3): 506-510.
  • Sun J, Qin L, Wang D, Zhao H, Gong M, Dong X, Zhou W. 2023. Fabrication of novel printable artificial bone composites used as cartilage scaffolds by an additive manufacturing process. J Appl Polym Sci, 140(43): e54576.
  • Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, Ohtori S. 2020. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone, 132: 115212.
  • Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ. 2007. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res, 22(10): 1548-1556.
  • Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang J. 2023. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater, 32: 400-414.
  • Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Chen X. 2019. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater, 29(36): 1903279.

Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması

Year 2024, , 752 - 755, 15.07.2024
https://doi.org/10.34248/bsengineering.1492107

Abstract

Kemik dokusu organik ve inorganik bileşenlerden oluşan bir yapıdır. Kemik dokusunun kırılmasıyla ilgili sorunlar mevcuttur. Kırığın kaynaması ve rehabilitasyon süreci çeşitli nedenlerden dolayı uzun zaman almaktadır. Yan etkiler arasında kemik kırıklarının iyileşmesinde gecikme, kemiğin kaynamaması ve enfeksiyonlar yer alır. Son yıllarda yapılan çalışmalar ortopedi cerrahlarını hücresel tedaviye ve biyomateryallere yönlendirmiştir. Çalışmamızda kollajen, lif kabağı, PRP ve kondrosit (kıkırdak hücresi) içeren iskeleleri in vivo iyileşme açısından araştırdık. Çalışma rastgele 4 gruba ayrılan 12 adet tavşan üzerinde gerçekleştirildi. Tavşanlar implantasyondan 8 hafta sonra yüksek doz anestezi uygulanarak sakrifiye edildi. Ameliyatından sonra 8. haftada sakrifiye edilen hayvanlardan alınan numuneler üzerinde histolojik analiz yapıldı. Sonuçlarımız lif kabağı+PRP+kondrosit hücre içeren iskelelerinin biyouyumlu olduğunu ve iyileştirme mühendisliğine mükemmel bir alternatif olduğunu gösterdi.

References

  • Alshammari A, Alabdah F, Wang W, Cooper G. 2023. Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: Relationship of scaffold pore architecture to bone tissue formation. Polymers, 15(19): 3918.
  • Baysan G, Colpankan Gunes O, Akokay P, Husemoglu RB, Ertugruloglu P, Ziylan Albayrak A, Havitcioglu H. 2022. Loofah-chitosan and poly (−3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol, 221: 1171-1183.
  • Baysan G, Gunes O C, Turemis C, Akokay Yilmaz P, Husemoglu R B, Kara Ozenler A, Cecen B. 2023. Using loofah reinforced chitosan-collagen hydrogel based scaffolds in-vitro and in-vivo; healing in cartilage tissue defects. Materialia, 31: 101881.
  • Blazquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. 2023. Mechanics predicts effective critical-size bone regeneration using 3d-printed bioceramic scaffolds. Tissue Eng Regen Med, 20(6): 893-904.
  • Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. 2023. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol, 257(Pt 1):128593.
  • Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Ding C. 2023. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules, 28(20): 7039.
  • Göransson H. 1993. Callus formation after re-injury to experimental bone defect. Arch Orthop Trauma Surg, 112(5): 232-235.
  • Han W, He W, Yang W, Li J, Yang Z, Lu X, Qian Y. 2016. The osteogenic potential of human bone callus. Sci Rep, 6(1): 36330.
  • Li H, Hu C, Yu H, Chen C. 2018. Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Adv, 8(7): 3736-3749.
  • Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. 2013. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics, 36(11): 868-873.
  • Liu Q, Liu Z, Guo H, Liang J, Zhang Y. 2022. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskeletal Disord, 23(1): 490.
  • Mito K, Lachnish J, Le W, Chan C, Chang Y L, Yao J 2023. Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model. Tissue Eng Part A, 30(3-4):107-114.
  • Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Ding J. 2023. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 3: 20210043.
  • Ramzan F, Salim A, Khan I. 2023. Osteochondral tissue engineering dilemma: Scaffolding trends in regenerative medicine. Stem Cell Rev Rep, 19(6): 1615-1634.
  • Sakeena Q, Makhdoomi DM, Rather SA, Parrah JUD, Dar SH, Gugjoo MB. 2023. Radiographic evaluation of healing potential of stem cell-loaded scaffold in experimental bone defect. SKUAST J Res, 25(3): 506-510.
  • Sun J, Qin L, Wang D, Zhao H, Gong M, Dong X, Zhou W. 2023. Fabrication of novel printable artificial bone composites used as cartilage scaffolds by an additive manufacturing process. J Appl Polym Sci, 140(43): e54576.
  • Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, Ohtori S. 2020. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone, 132: 115212.
  • Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ. 2007. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res, 22(10): 1548-1556.
  • Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang J. 2023. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater, 32: 400-414.
  • Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Chen X. 2019. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater, 29(36): 1903279.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Biofabrication, Biomaterials in Biomedical Engineering, Biomaterial , Animal Cell Culture and Tissue Engineering
Journal Section Research Articles
Authors

Bora Uzun 0000-0001-6638-1799

Publication Date July 15, 2024
Submission Date June 5, 2024
Acceptance Date July 8, 2024
Published in Issue Year 2024

Cite

APA Uzun, B. (2024). Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. Black Sea Journal of Engineering and Science, 7(4), 752-755. https://doi.org/10.34248/bsengineering.1492107
AMA Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. July 2024;7(4):752-755. doi:10.34248/bsengineering.1492107
Chicago Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science 7, no. 4 (July 2024): 752-55. https://doi.org/10.34248/bsengineering.1492107.
EndNote Uzun B (July 1, 2024) Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. Black Sea Journal of Engineering and Science 7 4 752–755.
IEEE B. Uzun, “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”, BSJ Eng. Sci., vol. 7, no. 4, pp. 752–755, 2024, doi: 10.34248/bsengineering.1492107.
ISNAD Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science 7/4 (July 2024), 752-755. https://doi.org/10.34248/bsengineering.1492107.
JAMA Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. 2024;7:752–755.
MLA Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science, vol. 7, no. 4, 2024, pp. 752-5, doi:10.34248/bsengineering.1492107.
Vancouver Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. 2024;7(4):752-5.

                                                24890