Research Article
BibTex RIS Cite

The Notes on Slant Helices According to Equiform Frame on Symplectic Space

Year 2024, , 1241 - 1245, 15.11.2024
https://doi.org/10.34248/bsengineering.1499614

Abstract

In this paper, first of all, we define basic definitions, some characterizations and theorems of symplectic space we calculated equiform frame in 4-dimensional symplectic space. Then, we obtain Frenet vectors and curvatures of a symplectic curve due to equiform frame. We have dealed with the properties of k-type slant helix according to equiform frame. It is seen that there exist k-type slant helices for all cases. In addition, we express some characterizations for k-type slant helix according to equiform frame geometry in symplectic regular curves. Finally, we give an example about symplectic space on graphics with symplectic frame on 4-dimensional symplectic space.

References

  • Abdel-Aziz HS, Saad, MK, Abdel-Salam, AA. 2015. Equiform differential geometry of curves in Minkowski space-time. arXiv.org/math/ arXiv, 1501: 02283.
  • Ali A, Lopez R, Turgut M. 2012. K-type partially null and pseudo null slant helices in Minkowski 4-space. Math Commun, 17: 93-103.
  • Ali A, Lopez R. 2011. Slant helices in Minkowski space E₁³. J Korean Math Soc, 48: 159167.MR2778006.
  • Ali AT, Turgut M. 2010. Some characterizations of slant helices in Euclidean space En, Hacet J Math Stat, 39(3): 327-336.
  • Bulut F, Bektaş M. 2020. Special helices on equiform differential
  • Bulut F, Eker A. 2023. Lorentz-Darboux çatısına göre k ve (k,m)−tip Slant Helisler, Iğdır Üniv Fen Bil Enst Derg, 13(2): 1237-1246. https://doi.org/10.21597/jist.1205226
  • Bulut F, Tartık F. 2021. (k,m)-type Slant Helices according to parallel transport frame in Euclidean 4-Space. Turkish J Math Comput Sci, 13(2): 261-269. https://doi.org/10.47000/tjmcs.858489
  • Bulut F. 2021a. Special helices on equiform differential geometry of timelike curves in E_1^4, Cumhuriyet Sci J, 42(4): 906-915. https://doi.org/10.17776/csj.962785
  • Bulut F. 2021b. Slant Helices of (k,m)-type according to the ED-Frame in Minkowski 4-sSpace. Symmetry, 13(11): 2185-2201. https://doi.org/10.3390/sym13112185
  • Bulut F. 2023, Darboux vector-based non-linear differential equations. Prespacetime J, 14(5): 533-543.
  • Chern SS, Wang HC. 1947. Differential geometry in Symplectic spaces. Sci Rep Nat Tsing Hua, 1947: 57.
  • Çiçek.Çetin E, Bektaş M. 2019. The characterizations of affine symplectic curves in R⁴. Mathemat, 7(1): 110
  • Çiçek.Çetin E, Bektaş M. 2020a. K-type slant helices for symplectic curve in 4-dimensional symplectic space. Facta Univ Series, Math Inform, 2020: 641-646.
  • Çiçek.Çetin E, Bektaş M. 2020b. Some new characterizations of symplectic curve in 4-dimensional symplectic space. Commun Adv Math Sci, 2(4): 331-334.
  • Ferrandez A, Gimenĕz A, Lucas P. 2002. Null generalized helices in Lorentz-Minkowski space. J Phys A: Math Gen, 35: 8243-8251.
  • Izumiya S, Takeuchi N. 2004. New special curves and developable surfaces. Turk J Math, 28: 153-163.
  • Kamran N, Olver P. 2009. K. Tenenblat. Local symplectic invariants for curves. Commun Contemp Math, 11(2): 165-183.
  • Kula L, Yaylı Y. 2005. On slant helix and its spherical indicatrix. App Math Comput, 169: 600-607.
  • Önder M, Kazaz M, Kocayiğit H, Kılıç O. 2008.B₂-slant helix in Euclidean 4-space E⁴. Int J Cont Mat Sci, 3:1443-1440
  • Struik DJ. 1988. Lectures on classical differential geometry. Dover, New York, US, pp: 143.
  • Valiquette F. 2012. Geometric affine symplectic curve flows in R⁴. Diff Geo Appl, 30(6): 631-641.
  • Yılmaz M, Bektaş M. 2018. Slant helices of (k,m) -type in E⁴. Acta Univ Sapientiae Math, 10(2): 395-401.
  • Yılmaz M, Bektaş M. 2020. K, m-type slant helices for partially null and pseudo null curves in Minkowski space E₁⁴. Appl Math Nonlinear Sci, 5(1): 515-520.

The Notes on Slant Helices According to Equiform Frame on Symplectic Space

Year 2024, , 1241 - 1245, 15.11.2024
https://doi.org/10.34248/bsengineering.1499614

Abstract

In this paper, first of all, we define basic definitions, some characterizations and theorems of symplectic space we calculated equiform frame in 4-dimensional symplectic space. Then, we obtain Frenet vectors and curvatures of a symplectic curve due to equiform frame. We have dealed with the properties of k-type slant helix according to equiform frame. It is seen that there exist k-type slant helices for all cases. In addition, we express some characterizations for k-type slant helix according to equiform frame geometry in symplectic regular curves. Finally, we give an example about symplectic space on graphics with symplectic frame on 4-dimensional symplectic space.

References

  • Abdel-Aziz HS, Saad, MK, Abdel-Salam, AA. 2015. Equiform differential geometry of curves in Minkowski space-time. arXiv.org/math/ arXiv, 1501: 02283.
  • Ali A, Lopez R, Turgut M. 2012. K-type partially null and pseudo null slant helices in Minkowski 4-space. Math Commun, 17: 93-103.
  • Ali A, Lopez R. 2011. Slant helices in Minkowski space E₁³. J Korean Math Soc, 48: 159167.MR2778006.
  • Ali AT, Turgut M. 2010. Some characterizations of slant helices in Euclidean space En, Hacet J Math Stat, 39(3): 327-336.
  • Bulut F, Bektaş M. 2020. Special helices on equiform differential
  • Bulut F, Eker A. 2023. Lorentz-Darboux çatısına göre k ve (k,m)−tip Slant Helisler, Iğdır Üniv Fen Bil Enst Derg, 13(2): 1237-1246. https://doi.org/10.21597/jist.1205226
  • Bulut F, Tartık F. 2021. (k,m)-type Slant Helices according to parallel transport frame in Euclidean 4-Space. Turkish J Math Comput Sci, 13(2): 261-269. https://doi.org/10.47000/tjmcs.858489
  • Bulut F. 2021a. Special helices on equiform differential geometry of timelike curves in E_1^4, Cumhuriyet Sci J, 42(4): 906-915. https://doi.org/10.17776/csj.962785
  • Bulut F. 2021b. Slant Helices of (k,m)-type according to the ED-Frame in Minkowski 4-sSpace. Symmetry, 13(11): 2185-2201. https://doi.org/10.3390/sym13112185
  • Bulut F. 2023, Darboux vector-based non-linear differential equations. Prespacetime J, 14(5): 533-543.
  • Chern SS, Wang HC. 1947. Differential geometry in Symplectic spaces. Sci Rep Nat Tsing Hua, 1947: 57.
  • Çiçek.Çetin E, Bektaş M. 2019. The characterizations of affine symplectic curves in R⁴. Mathemat, 7(1): 110
  • Çiçek.Çetin E, Bektaş M. 2020a. K-type slant helices for symplectic curve in 4-dimensional symplectic space. Facta Univ Series, Math Inform, 2020: 641-646.
  • Çiçek.Çetin E, Bektaş M. 2020b. Some new characterizations of symplectic curve in 4-dimensional symplectic space. Commun Adv Math Sci, 2(4): 331-334.
  • Ferrandez A, Gimenĕz A, Lucas P. 2002. Null generalized helices in Lorentz-Minkowski space. J Phys A: Math Gen, 35: 8243-8251.
  • Izumiya S, Takeuchi N. 2004. New special curves and developable surfaces. Turk J Math, 28: 153-163.
  • Kamran N, Olver P. 2009. K. Tenenblat. Local symplectic invariants for curves. Commun Contemp Math, 11(2): 165-183.
  • Kula L, Yaylı Y. 2005. On slant helix and its spherical indicatrix. App Math Comput, 169: 600-607.
  • Önder M, Kazaz M, Kocayiğit H, Kılıç O. 2008.B₂-slant helix in Euclidean 4-space E⁴. Int J Cont Mat Sci, 3:1443-1440
  • Struik DJ. 1988. Lectures on classical differential geometry. Dover, New York, US, pp: 143.
  • Valiquette F. 2012. Geometric affine symplectic curve flows in R⁴. Diff Geo Appl, 30(6): 631-641.
  • Yılmaz M, Bektaş M. 2018. Slant helices of (k,m) -type in E⁴. Acta Univ Sapientiae Math, 10(2): 395-401.
  • Yılmaz M, Bektaş M. 2020. K, m-type slant helices for partially null and pseudo null curves in Minkowski space E₁⁴. Appl Math Nonlinear Sci, 5(1): 515-520.
There are 23 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Esra Çiçek Çetin 0000-0001-8213-0156

Publication Date November 15, 2024
Submission Date June 12, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024

Cite

APA Çiçek Çetin, E. (2024). The Notes on Slant Helices According to Equiform Frame on Symplectic Space. Black Sea Journal of Engineering and Science, 7(6), 1241-1245. https://doi.org/10.34248/bsengineering.1499614
AMA Çiçek Çetin E. The Notes on Slant Helices According to Equiform Frame on Symplectic Space. BSJ Eng. Sci. November 2024;7(6):1241-1245. doi:10.34248/bsengineering.1499614
Chicago Çiçek Çetin, Esra. “The Notes on Slant Helices According to Equiform Frame on Symplectic Space”. Black Sea Journal of Engineering and Science 7, no. 6 (November 2024): 1241-45. https://doi.org/10.34248/bsengineering.1499614.
EndNote Çiçek Çetin E (November 1, 2024) The Notes on Slant Helices According to Equiform Frame on Symplectic Space. Black Sea Journal of Engineering and Science 7 6 1241–1245.
IEEE E. Çiçek Çetin, “The Notes on Slant Helices According to Equiform Frame on Symplectic Space”, BSJ Eng. Sci., vol. 7, no. 6, pp. 1241–1245, 2024, doi: 10.34248/bsengineering.1499614.
ISNAD Çiçek Çetin, Esra. “The Notes on Slant Helices According to Equiform Frame on Symplectic Space”. Black Sea Journal of Engineering and Science 7/6 (November 2024), 1241-1245. https://doi.org/10.34248/bsengineering.1499614.
JAMA Çiçek Çetin E. The Notes on Slant Helices According to Equiform Frame on Symplectic Space. BSJ Eng. Sci. 2024;7:1241–1245.
MLA Çiçek Çetin, Esra. “The Notes on Slant Helices According to Equiform Frame on Symplectic Space”. Black Sea Journal of Engineering and Science, vol. 7, no. 6, 2024, pp. 1241-5, doi:10.34248/bsengineering.1499614.
Vancouver Çiçek Çetin E. The Notes on Slant Helices According to Equiform Frame on Symplectic Space. BSJ Eng. Sci. 2024;7(6):1241-5.

                                                24890