Research Article
BibTex RIS Cite

DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter

Year 2024, , 1014 - 1021, 15.09.2024
https://doi.org/10.34248/bsengineering.1532974

Abstract

This study investigates the DC regulation of a DC-DC buck converter operating with pulse width modulation (PWM), taking into account the internal resistance of the coil and the on-resistance of the switching device. The effect of these parameters on the input/output disturbances is analyzed in continuous-conduction mode under constant frequency voltage mode control. The study also explores the effect on loop gain using the IRU3037 8-pin IC synchronous PWM controlled buck converter. The transfer function of the IRU3037 IC is derived from datasheet values using state-space averaging and AC small signal methods. A Type II compensator is then designed based on the derived transfer function. In addition, the step response characteristics of the open-loop and closed-loop circuits are investigated by time domain analysis.

References

  • Alavi P, Babaei E, Mohseni P, Marzang V. 2020. Study and analysis of a DC–DC soft‐switched buck converter. IET Power Electron, 13(7): 1456-1465.
  • Beghou L, Popat M, MacDonald S. 2021. PWM control of 3-phase PFC vienna rectifier derived from an average current-based control of single-phase PFC boost converter. In 2021 IEEE IEEE Energy Convers. Congr. Expo. (ECCE), October 10-14, Vancouver, Canada, pp: 3452-3459.
  • Boukerdja M, Chouder A, Hassaine L, Bouamama BO, Issa W, Louassaa K. 2020. H∞ based control of a DC/DC buck converter feeding a constant power load in uncertain DC microgrid system. ISAT, 105: 278-295.
  • Bryant B, Kazimierczuk MK. 2006. Voltage loop of boost PWM DC-DC converters with peak current-mode control. IEEE Trans Circuits Syst I, Reg Papers, 53(1): 99-105.
  • Chadha A, Kazimierczuk MK. 2020. Small-signal modeling of open-loop PWM tapped-inductor buck DC–DC converter in CCM. IEEE Trans Ind Electron, 68(7): 5765-5775.
  • Herbst G. 2019. A building-block approach to state-space modeling of DC-DC converter systems. J Multidiscip Sci J, 2(3): 247–267.
  • Hsieh YH, Lee FC. 2022. Improved three-terminal model for PWM converters with current-mode control. In 2022 IEEE IEEE Energy Convers. Congr. Expo. (ECCE), October 9-13, Detroit, USA, pp: 1-8.
  • Jing T, Maklakov A, Radionov A, Gasiyarov V, Liang Y. 2022. Formulations, solving algorithms, existing problems and future challenges of pre-programmed PWM techniques for high-power AFE converters: A comprehensive review. Energies, 15(5): 1696.
  • Kapat S, Krein PT. 2020. A tutorial and review discussion of modulation, control and tuning of high-performance DC-DC converters based on small-signal and large-signal approaches. IEEE Open J Power Electron, 1: 339-371.
  • Kobaku T, Jeyasenthil R, Sahoo S, Ramchand R, Dragicevic T. 2020. Quantitative feedback design-based robust PID control of voltage mode-controlled DC-DC boost converter. IEEE Trans. Circuits Syst. II: Express Briefs, 68(1): 286-290.
  • Leoncini M, Melillo P, Bertolini A, Levantino S, Ghioni M. 2022. Integrated loop-gain measurement circuit for DC/DC boost converters with time-based control. In 2022 IEEE 17th Conf. Ph. D Res. Microelectron. Electron. (PRIME), June 12-15, Villasimius, Italy, pp: 253-256.
  • Lin J, Su M, Sun Y, Li X, Xie S, Zhang G, Blaabjerg F, Feng, J. 2021. Accurate loop gain modeling of digitally controlled buck converters. IEEE Trans Ind Electron, 69(1): 725-739.
  • Linares-Flores J, Méndez AH, García-Rodríguez C, Sira-Ramírez H. 2013. Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Trans Ind Electron, 61(8): 4105-4114.
  • Lu D, Zeng X, Hong Z. 2023. Accurate loop gain model of ripple-based constant on-time controlled buck converters. IEEE Trans Power Electron, 38(6): 7034-7048.
  • Michal V. 2016. Dynamic duty-cycle limitation of the boost DC/DC converter allowing maximal output power operations. In 2016 IEEE Int. Conf. Appl. Electron, September 6-7, Pilsen, Czech Republic, pp: 177-182.
  • Naik BB, Mehta AJ. 2017. Sliding mode controller with modified sliding function for DC-DC Buck Converter. ISA T, 70: 279-287.
  • Polivka WM, Chetty PRK, Middlebrook RD. 1980. State-space average modelling of converters with parasitics and storage-time modulation. In 1980 IEEE Power Electron Spec Conf, June 16-20, Atlanta, USA, pp: 119-143.
  • Rahimi AM, Emadi A. 2008. An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems. IEEE Trans Veh Technol, 58(6): 2689-2702.
  • Ravi D, Ghosh A. 2022. Voltage mode control of buck converter using practical PID controller. In 2022 IEEE Int. Conf. Intell. Control. Comput. Smart Power (ICICCSP), July 21-23, Hyderabad, India, pp: 1-6.
  • Samosir AS, Sutikno T, Mardiyah L. 2023. Simple formula for designing the PID controller of a DC-DC buck converter. Int J Power Electron Drive Syst, 14(1): 327-336.
  • Sangeetha S, Revathi BS, Balamurugan K, Suresh G. 2023. Performance analysis of buck converter with fractional PID controller using hybrid technique. Robotics Auton Syst, 169: 104515.
  • Simmons J, Tymerski R. 2021. Design and control of an alternative buck PWM DC-to-DC converter. J Power Energy Eng, 9(6): 43-61.
  • Singh R, Bose S, Dwivedi P. 2020. Closed loop control of flyback converter with PV as a source. In 2020 IEEE 9th Power India Int. Conf. (PIICON), February 28-March 01, Sonepat, India, pp: 1-6.
  • Su I, Li D. 2020. Understanding and simulation of loop stability test for DC/DC converters. URL: www.ti.com (accessed date: 28 July 2024).
  • Suman G, Kumar BP, Kumar MS, Babu BC, Subhashini KR. 2012. Modeling, analysis and design of synchronous buck converter using state space averaging technique for PV energy system. In 2012 IEEE Int Symp on Electronic System Design (ISED), December 19-22, Kolkata, India, pp: 281-285.
  • Xie H, Guo E. 2019. How the switching frequency affects the performance of a buck converter. Texas Instruments Incorporated: Dallas, TX, USA, pp: 53.
  • Yasuda T, Itoh JI. 2024. A power balancing control for large power unbalance in a modular multilevel multiport converter with phase-disposition PWM. IEEJ J Industry Appl, 13(1): 41-51.
  • Zhou S, Zhou G, He M, Mao S, Zhao H, Liu G. 2024. Stability effect of different modulation parameters in voltage-mode PWM control for CCM switching DC-DC converter. IEEE Trans Transport Electr, 10(2): 2408-2422.

DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter

Year 2024, , 1014 - 1021, 15.09.2024
https://doi.org/10.34248/bsengineering.1532974

Abstract

This study investigates the DC regulation of a DC-DC buck converter operating with pulse width modulation (PWM), taking into account the internal resistance of the coil and the on-resistance of the switching device. The effect of these parameters on the input/output disturbances is analyzed in continuous-conduction mode under constant frequency voltage mode control. The study also explores the effect on loop gain using the IRU3037 8-pin IC synchronous PWM controlled buck converter. The transfer function of the IRU3037 IC is derived from datasheet values using state-space averaging and AC small signal methods. A Type II compensator is then designed based on the derived transfer function. In addition, the step response characteristics of the open-loop and closed-loop circuits are investigated by time domain analysis.

References

  • Alavi P, Babaei E, Mohseni P, Marzang V. 2020. Study and analysis of a DC–DC soft‐switched buck converter. IET Power Electron, 13(7): 1456-1465.
  • Beghou L, Popat M, MacDonald S. 2021. PWM control of 3-phase PFC vienna rectifier derived from an average current-based control of single-phase PFC boost converter. In 2021 IEEE IEEE Energy Convers. Congr. Expo. (ECCE), October 10-14, Vancouver, Canada, pp: 3452-3459.
  • Boukerdja M, Chouder A, Hassaine L, Bouamama BO, Issa W, Louassaa K. 2020. H∞ based control of a DC/DC buck converter feeding a constant power load in uncertain DC microgrid system. ISAT, 105: 278-295.
  • Bryant B, Kazimierczuk MK. 2006. Voltage loop of boost PWM DC-DC converters with peak current-mode control. IEEE Trans Circuits Syst I, Reg Papers, 53(1): 99-105.
  • Chadha A, Kazimierczuk MK. 2020. Small-signal modeling of open-loop PWM tapped-inductor buck DC–DC converter in CCM. IEEE Trans Ind Electron, 68(7): 5765-5775.
  • Herbst G. 2019. A building-block approach to state-space modeling of DC-DC converter systems. J Multidiscip Sci J, 2(3): 247–267.
  • Hsieh YH, Lee FC. 2022. Improved three-terminal model for PWM converters with current-mode control. In 2022 IEEE IEEE Energy Convers. Congr. Expo. (ECCE), October 9-13, Detroit, USA, pp: 1-8.
  • Jing T, Maklakov A, Radionov A, Gasiyarov V, Liang Y. 2022. Formulations, solving algorithms, existing problems and future challenges of pre-programmed PWM techniques for high-power AFE converters: A comprehensive review. Energies, 15(5): 1696.
  • Kapat S, Krein PT. 2020. A tutorial and review discussion of modulation, control and tuning of high-performance DC-DC converters based on small-signal and large-signal approaches. IEEE Open J Power Electron, 1: 339-371.
  • Kobaku T, Jeyasenthil R, Sahoo S, Ramchand R, Dragicevic T. 2020. Quantitative feedback design-based robust PID control of voltage mode-controlled DC-DC boost converter. IEEE Trans. Circuits Syst. II: Express Briefs, 68(1): 286-290.
  • Leoncini M, Melillo P, Bertolini A, Levantino S, Ghioni M. 2022. Integrated loop-gain measurement circuit for DC/DC boost converters with time-based control. In 2022 IEEE 17th Conf. Ph. D Res. Microelectron. Electron. (PRIME), June 12-15, Villasimius, Italy, pp: 253-256.
  • Lin J, Su M, Sun Y, Li X, Xie S, Zhang G, Blaabjerg F, Feng, J. 2021. Accurate loop gain modeling of digitally controlled buck converters. IEEE Trans Ind Electron, 69(1): 725-739.
  • Linares-Flores J, Méndez AH, García-Rodríguez C, Sira-Ramírez H. 2013. Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Trans Ind Electron, 61(8): 4105-4114.
  • Lu D, Zeng X, Hong Z. 2023. Accurate loop gain model of ripple-based constant on-time controlled buck converters. IEEE Trans Power Electron, 38(6): 7034-7048.
  • Michal V. 2016. Dynamic duty-cycle limitation of the boost DC/DC converter allowing maximal output power operations. In 2016 IEEE Int. Conf. Appl. Electron, September 6-7, Pilsen, Czech Republic, pp: 177-182.
  • Naik BB, Mehta AJ. 2017. Sliding mode controller with modified sliding function for DC-DC Buck Converter. ISA T, 70: 279-287.
  • Polivka WM, Chetty PRK, Middlebrook RD. 1980. State-space average modelling of converters with parasitics and storage-time modulation. In 1980 IEEE Power Electron Spec Conf, June 16-20, Atlanta, USA, pp: 119-143.
  • Rahimi AM, Emadi A. 2008. An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems. IEEE Trans Veh Technol, 58(6): 2689-2702.
  • Ravi D, Ghosh A. 2022. Voltage mode control of buck converter using practical PID controller. In 2022 IEEE Int. Conf. Intell. Control. Comput. Smart Power (ICICCSP), July 21-23, Hyderabad, India, pp: 1-6.
  • Samosir AS, Sutikno T, Mardiyah L. 2023. Simple formula for designing the PID controller of a DC-DC buck converter. Int J Power Electron Drive Syst, 14(1): 327-336.
  • Sangeetha S, Revathi BS, Balamurugan K, Suresh G. 2023. Performance analysis of buck converter with fractional PID controller using hybrid technique. Robotics Auton Syst, 169: 104515.
  • Simmons J, Tymerski R. 2021. Design and control of an alternative buck PWM DC-to-DC converter. J Power Energy Eng, 9(6): 43-61.
  • Singh R, Bose S, Dwivedi P. 2020. Closed loop control of flyback converter with PV as a source. In 2020 IEEE 9th Power India Int. Conf. (PIICON), February 28-March 01, Sonepat, India, pp: 1-6.
  • Su I, Li D. 2020. Understanding and simulation of loop stability test for DC/DC converters. URL: www.ti.com (accessed date: 28 July 2024).
  • Suman G, Kumar BP, Kumar MS, Babu BC, Subhashini KR. 2012. Modeling, analysis and design of synchronous buck converter using state space averaging technique for PV energy system. In 2012 IEEE Int Symp on Electronic System Design (ISED), December 19-22, Kolkata, India, pp: 281-285.
  • Xie H, Guo E. 2019. How the switching frequency affects the performance of a buck converter. Texas Instruments Incorporated: Dallas, TX, USA, pp: 53.
  • Yasuda T, Itoh JI. 2024. A power balancing control for large power unbalance in a modular multilevel multiport converter with phase-disposition PWM. IEEJ J Industry Appl, 13(1): 41-51.
  • Zhou S, Zhou G, He M, Mao S, Zhao H, Liu G. 2024. Stability effect of different modulation parameters in voltage-mode PWM control for CCM switching DC-DC converter. IEEE Trans Transport Electr, 10(2): 2408-2422.
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Circuits and Systems
Journal Section Research Articles
Authors

Cağfer Yanarateş 0000-0003-0661-0654

Aytaç Altan 0000-0001-7923-4528

Early Pub Date September 10, 2024
Publication Date September 15, 2024
Submission Date August 14, 2024
Acceptance Date September 8, 2024
Published in Issue Year 2024

Cite

APA Yanarateş, C., & Altan, A. (2024). DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter. Black Sea Journal of Engineering and Science, 7(5), 1014-1021. https://doi.org/10.34248/bsengineering.1532974
AMA Yanarateş C, Altan A. DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter. BSJ Eng. Sci. September 2024;7(5):1014-1021. doi:10.34248/bsengineering.1532974
Chicago Yanarateş, Cağfer, and Aytaç Altan. “DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter”. Black Sea Journal of Engineering and Science 7, no. 5 (September 2024): 1014-21. https://doi.org/10.34248/bsengineering.1532974.
EndNote Yanarateş C, Altan A (September 1, 2024) DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter. Black Sea Journal of Engineering and Science 7 5 1014–1021.
IEEE C. Yanarateş and A. Altan, “DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter”, BSJ Eng. Sci., vol. 7, no. 5, pp. 1014–1021, 2024, doi: 10.34248/bsengineering.1532974.
ISNAD Yanarateş, Cağfer - Altan, Aytaç. “DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter”. Black Sea Journal of Engineering and Science 7/5 (September 2024), 1014-1021. https://doi.org/10.34248/bsengineering.1532974.
JAMA Yanarateş C, Altan A. DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter. BSJ Eng. Sci. 2024;7:1014–1021.
MLA Yanarateş, Cağfer and Aytaç Altan. “DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter”. Black Sea Journal of Engineering and Science, vol. 7, no. 5, 2024, pp. 1014-21, doi:10.34248/bsengineering.1532974.
Vancouver Yanarateş C, Altan A. DC Regulation and Loop Gain Analysis of a DC-DC Switch Mode Power Supply: A Case Study on a Synchronous PWM Controlled Buck Converter. BSJ Eng. Sci. 2024;7(5):1014-21.

                                                24890