Research Article
BibTex RIS Cite

On the Generalized Weighted Statistical Convergence

Year 2024, , 1310 - 1314, 15.11.2024
https://doi.org/10.34248/bsengineering.1553162

Abstract

Statistical convergence and summability represent a significant generalization of traditional convergence for sequences of real or complex values, allowing for a broader interpretation of convergence phenomena. This concept has been extensively examined by numerous researchers using various mathematical tools and applied to different mathematical structures over time, revealing its relevance across multiple disciplines. In the present study, a generalized definition of the concepts of statistical convergence and summability, termed (△_v^m )_u-generalized weighted statistical convergence and (△_v^m )_u-generalized weighted by [¯N_t ]-summability for real sequences, is introduced using the weighted density and generalized difference operator. Based on this definition, several fundamental properties and inclusion results, obtained by differentiating the components used in the definitions, are provided.

References

  • Barlak D. 2020. Statistical convergence of order β for (λ,μ) double sequences of fuzzy numbers, 39(5): 6949-6954.
  • Bektaş ÇA, Çolak R. 2005. On some generalized difference sequence spaces. Thai J Math, 3(1): 83-98.
  • Belen C, Mohiuddine SA. 2013. Generalized weighted statistical convergence and application. Appl Math Computat, 219(18): 9821-9826.
  • Braha NL, Srivastava HM, Et M. 2021. Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems. J App Math Comput, 65: 429-450.
  • Connor JS. 1988. The statistical and strong p-Cesaro convergence of sequences. Analysis, 8: 47-63.
  • Et M, Çolak R. 1995. On generalized difference sequence spaces. Soochow J Math, 21(4): 377-386.
  • Et M, Esi A. 2000. On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull Malaysian Math Sci Soc, 23: 25-32.
  • Et M, Nuray F. 2001. △^m-Statistical Convergence. Indian J Pure Appl Math, 32(6): 961-969.
  • Et M, Kandemir HŞ, Çakallı H. 2021. △^m-weighted statistical convergence. AIP Conf Proc, 2334: 040005.
  • Fast H. 1951. Sur la convergence statistique. Colloquium Mathematicum, 2: 241-244.
  • Fridy J. 1985. On statistical convergence, Analysis, 5: 301-313.
  • Ghosal S. 2016. Weighted statistical convergence of order α and its applications. J Egyptian Math Soc, 24(1): 60-67.
  • Güngör M, Et M. 2003. △^r-strongly almost summable sequences defined by Orlicz functions. Indian J Pure Appl Math, 34(8): 1141-1151.
  • Kadak U. 2016. On weighted statistical convergence based on (p,q)-integers and related approximation theorems for functions of two variables. J Math Analy Appl, 443(2): 752-764.
  • Kandemir HŞ, Et M, Çakallı H. 2023. Weighted statistical convergence of order α. Facta Univ Series: Math Info, 38(2): 317-327.
  • Karakaya V, Chishti TA. 2009. Weighted statistical convergence. Iranian J Sci Technol Transact A: Sci, 33(33): 219-223.
  • Kızmaz K. 1981. On certain sequence spaces. Canadian Math Bull, 24(2): 169-176.
  • Mursaleen M, Karakaya V, Ertürk M, Gürsoy F. 2012. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl Math Comput, 218(18): 9132-9137.
  • Salat T. 1980. On statistically convergent sequences of real numbers. MathSlovaca, 30: 139-150.
  • Schoenberg IJ. 959. The integrability of certain functions and related summability methods. Amer Math Monthly, 66: 361-375.
  • Steinhaus H. 1951. Sur la convergence ordinaire et la convergence asymptotique. Colloquium Math, 2: 73-74.

On the Generalized Weighted Statistical Convergence

Year 2024, , 1310 - 1314, 15.11.2024
https://doi.org/10.34248/bsengineering.1553162

Abstract

Statistical convergence and summability represent a significant generalization of traditional convergence for sequences of real or complex values, allowing for a broader interpretation of convergence phenomena. This concept has been extensively examined by numerous researchers using various mathematical tools and applied to different mathematical structures over time, revealing its relevance across multiple disciplines. In the present study, a generalized definition of the concepts of statistical convergence and summability, termed (△_v^m )_u-generalized weighted statistical convergence and (△_v^m )_u-generalized weighted by [¯N_t ]-summability for real sequences, is introduced using the weighted density and generalized difference operator. Based on this definition, several fundamental properties and inclusion results, obtained by differentiating the components used in the definitions, are provided.

References

  • Barlak D. 2020. Statistical convergence of order β for (λ,μ) double sequences of fuzzy numbers, 39(5): 6949-6954.
  • Bektaş ÇA, Çolak R. 2005. On some generalized difference sequence spaces. Thai J Math, 3(1): 83-98.
  • Belen C, Mohiuddine SA. 2013. Generalized weighted statistical convergence and application. Appl Math Computat, 219(18): 9821-9826.
  • Braha NL, Srivastava HM, Et M. 2021. Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems. J App Math Comput, 65: 429-450.
  • Connor JS. 1988. The statistical and strong p-Cesaro convergence of sequences. Analysis, 8: 47-63.
  • Et M, Çolak R. 1995. On generalized difference sequence spaces. Soochow J Math, 21(4): 377-386.
  • Et M, Esi A. 2000. On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull Malaysian Math Sci Soc, 23: 25-32.
  • Et M, Nuray F. 2001. △^m-Statistical Convergence. Indian J Pure Appl Math, 32(6): 961-969.
  • Et M, Kandemir HŞ, Çakallı H. 2021. △^m-weighted statistical convergence. AIP Conf Proc, 2334: 040005.
  • Fast H. 1951. Sur la convergence statistique. Colloquium Mathematicum, 2: 241-244.
  • Fridy J. 1985. On statistical convergence, Analysis, 5: 301-313.
  • Ghosal S. 2016. Weighted statistical convergence of order α and its applications. J Egyptian Math Soc, 24(1): 60-67.
  • Güngör M, Et M. 2003. △^r-strongly almost summable sequences defined by Orlicz functions. Indian J Pure Appl Math, 34(8): 1141-1151.
  • Kadak U. 2016. On weighted statistical convergence based on (p,q)-integers and related approximation theorems for functions of two variables. J Math Analy Appl, 443(2): 752-764.
  • Kandemir HŞ, Et M, Çakallı H. 2023. Weighted statistical convergence of order α. Facta Univ Series: Math Info, 38(2): 317-327.
  • Karakaya V, Chishti TA. 2009. Weighted statistical convergence. Iranian J Sci Technol Transact A: Sci, 33(33): 219-223.
  • Kızmaz K. 1981. On certain sequence spaces. Canadian Math Bull, 24(2): 169-176.
  • Mursaleen M, Karakaya V, Ertürk M, Gürsoy F. 2012. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl Math Comput, 218(18): 9132-9137.
  • Salat T. 1980. On statistically convergent sequences of real numbers. MathSlovaca, 30: 139-150.
  • Schoenberg IJ. 959. The integrability of certain functions and related summability methods. Amer Math Monthly, 66: 361-375.
  • Steinhaus H. 1951. Sur la convergence ordinaire et la convergence asymptotique. Colloquium Math, 2: 73-74.
There are 21 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Research Articles
Authors

Çiğdem Bektaş 0000-0003-0397-3193

Erdal Bayram 0000-0001-8488-359X

Publication Date November 15, 2024
Submission Date September 20, 2024
Acceptance Date October 28, 2024
Published in Issue Year 2024

Cite

APA Bektaş, Ç., & Bayram, E. (2024). On the Generalized Weighted Statistical Convergence. Black Sea Journal of Engineering and Science, 7(6), 1310-1314. https://doi.org/10.34248/bsengineering.1553162
AMA Bektaş Ç, Bayram E. On the Generalized Weighted Statistical Convergence. BSJ Eng. Sci. November 2024;7(6):1310-1314. doi:10.34248/bsengineering.1553162
Chicago Bektaş, Çiğdem, and Erdal Bayram. “On the Generalized Weighted Statistical Convergence”. Black Sea Journal of Engineering and Science 7, no. 6 (November 2024): 1310-14. https://doi.org/10.34248/bsengineering.1553162.
EndNote Bektaş Ç, Bayram E (November 1, 2024) On the Generalized Weighted Statistical Convergence. Black Sea Journal of Engineering and Science 7 6 1310–1314.
IEEE Ç. Bektaş and E. Bayram, “On the Generalized Weighted Statistical Convergence”, BSJ Eng. Sci., vol. 7, no. 6, pp. 1310–1314, 2024, doi: 10.34248/bsengineering.1553162.
ISNAD Bektaş, Çiğdem - Bayram, Erdal. “On the Generalized Weighted Statistical Convergence”. Black Sea Journal of Engineering and Science 7/6 (November 2024), 1310-1314. https://doi.org/10.34248/bsengineering.1553162.
JAMA Bektaş Ç, Bayram E. On the Generalized Weighted Statistical Convergence. BSJ Eng. Sci. 2024;7:1310–1314.
MLA Bektaş, Çiğdem and Erdal Bayram. “On the Generalized Weighted Statistical Convergence”. Black Sea Journal of Engineering and Science, vol. 7, no. 6, 2024, pp. 1310-4, doi:10.34248/bsengineering.1553162.
Vancouver Bektaş Ç, Bayram E. On the Generalized Weighted Statistical Convergence. BSJ Eng. Sci. 2024;7(6):1310-4.

                                                24890