Research Article
BibTex RIS Cite

Geosentetik Donatılı İstinat Duvarı ile Betonarme İstinat Duvarının Karşılaştırmalı Analizi: Kastamonu-Karabük Karayolu Örneği

Year 2022, , 225 - 240, 30.06.2022
https://doi.org/10.35193/bseufbd.1006040

Abstract

Dolgu uygulaması karayolu ve demiryolu inşaatlarında sıklıkla karşılaşılan bir uygulamadır. Bu çalışmada dolgu stabilizasyonunu sağlamak amacıyla yapılan ve geleneksel sanat yapılarından olan betonarme istinat duvarı ile geosentetik (geogrid) donatılı istinat yapısı maliyet, yapım süresi, hizmete açılma süresi, estetiklik ve hizmet ömrü kriterleri dikkate alınarak karşılaştırmalı olarak analiz edilmiştir. Mukayeseler, Karayolları Genel Müdürlüğü (KGM) tarafından uygulama yapılmakta olan aynı karayolu üzerindeki farklı iki lokasyondaki mühendislik yapıları üzerinde yapılmıştır. Birinci lokasyonda mevcut geosentetik donatılı duvar yerine betonarme istinat duvarı projelendirilirken, ikinci lokasyonda ise mevcut betonarme istinat duvarı yerine geosentetik donatılı duvar projelendirilmiştir. KGM pozları doğrultusunda maliyet analizleri yapılmıştır. Özellikle yükseklik artışına paralel olarak geosentetik donatılı duvarların maliyet açısından avantajlı duruma geçtiği sonucuna ulaşılmıştır. Ayrıca hizmet ömrü, inşa süresi, kullanıma açılma süresi ve estetiklik kriterleri açısından performansları değerlendirildiğinde ise geosentetik donatılı duvarların daha avantajlı olduğu ortaya konulmuştur. Çalışma sonuçlarından elde edilen bilgilerin, yol çalışmalarında dolgu stabilite sorunu ortaya çıkan lokasyonlarda hem performans hem de maliyet açısından hangi sanat yapısının tercih edilmesinin daha uygun olacağının karar verilmesine katkı sunulacağı düşünülmektedir.

Thanks

Yazarlar, Polat Yol AŞ’ye çalışma kapsamında bilgi ve belge desteklerinden dolayı teşekkür ederler.

References

  • Aydın, U. (2019). Yüksek dolgularda geo-sentetik donatılı duvar ile hafifletme konsollu betonarme istinat duvarının kıyaslanması (Kastamonu-Karabük Yolu örneği), Karabuk University.
  • Manahiloh, K. N., Nejad, M. M., & Momeni, M. S. (2015). Optimization of Design Parameters and Cost of Geosynthetic-Reinforced Earth Walls Using Harmony Search Algorithm, International Journal Of Geosynthetics And Ground Engineering, 1(2), 1–12 (2015).
  • Vahedifard, F., Leshchinsky, B. A., Sehat, S., & Leshchinsky, D. (2014). Impact of Cohesion on Seismic Design of Geosynthetic-Reinforced Earth Structures, Journal Of Geotechnical And Geoenvironmental Engineering, 140 (6).
  • Basudhar, P. K., Vashistha, A., Deb, K., & Dey, A. (2007). Cost Optimization of Reinforced Earth Walls", Geotechnical And Geological Engineering, 26(1), 1–12.
  • Gaudio, D., Masini, L., & Rampello, S. (2018). A performance-based approach to design reinforced-earth retaining walls, Geotextiles And Geomembranes, 46 (4), 470–485.
  • Kashani, A. R., Saneirad, A., & Gandomi, A. H. (2019). Optimum design of reinforced earth walls using evolutionary optimization algorithms, Neural Computing And Applications, 32 (16).
  • Gaudio, D., Masini, L., & Rampello, S. (2018). Seismic Performance of Geosynthetic-Reinforced Earth Retaining Walls Subjected to Strong Ground Motions.
  • Xu, J., Du, X., & Yang, X. (2019). Stability analysis of 3D geosynthetic–reinforced earth structures composed of nonhomogeneous cohesive backfills, Soil Dynamics And Earthquake Engineering, 126.
  • Han, J. & Leshchinsky, D. (2006). Stability analyses of geosynthetic-reinforced earth structures using limit equilibrium and numerical methods.
  • Gaudio, D., Masini, L., & Rampello, S. (2021). A Procedure to Design Geosynthetic-Reinforced Earth-Retaining Walls Under Seismic Loadings.
  • Yang, S., Gao, Y., Cui, K., Zhang, F., & Wu, D. (2020). "Three-dimensional internal stability analysis of geosynthetic-reinforced earth structures considering seismic loading, Soil Dynamics And Earthquake Engineering, 130, 105979.
  • Belal, A. M. (1997). Finite Element Analysis of Geosynthetic Reinforced Soil Retaining Walls Subjected to Seismic Loading, The University of Mississippi The.
  • Aroni Hesari, S., Javankhoshdel, S., Payan, M., & Jamshidi Chenari, R. (2021). Pseudo-static internal stability analysis of geosynthetic-reinforced earth slopes using horizontal slices method, Geomechanics And Geoengineering, 1–26.
  • Akhlaghi, T. & Nikkar, A. (2014). Numerical analyses of dynamic response of geosynthetic-reinforced soil retaining wall, Geosystem Engineering, 17 (2), 142–149.
  • Rahmouni, O., Mabrouki, A., Benmeddour, D., & Mellas, M. (2016). A numerical investigation into the behavior of geosynthetic-reinforced soil segmental retaining walls, International Journal Of Geotechnical Engineering, 10 (5), 435–444.
  • Wu, J. & Pham, T. (2010). An analytical model for calculating lateral movement of a geosynthetic-reinforced soil (GRS) wall with modular block facing, International Journal Of Geotechnical Engineering, 4 (4), 527–535.
  • Mandal, J. N. & Jambale, K. S. (1991). Computer aided design of geosynthetic reinforced soil walls, Geotechnical And Geological Engineering, 9 (2), 139–151.
  • Djabri, M. & Benmebarek, S. (2016).FEM Analysis of Back-to-Back Geosynthetic-Reinforced Soil Retaining Walls, International Journal Of Geosynthetics And Ground Engineering, 2 (3), 26.
  • Kim, Y. S.& Won, M. S. (2005) "Deformation behaviors and finite element analyses of geosynthetic reinforced soil walls, KSCE Journal Of Civil Engineering, 9 (5), 363–369.
  • Başbuğ, E., Cengiz, C., & Güler, E. (2021).1-g Shaking table tests to determine the behavior of geosynthetic reinforced soil walls under seismic loads, Transportation Geotechnics, 30.
  • Lu, L., Ma, S., Wang, Z., & Zhang, Y.(2021). Experimental study of the performance of geosynthetics-reinforced soil walls under differential settlements, Geotextiles And Geomembranes, 49 (1), 97–108.
  • Kilic, I. E., Cengiz, C., Edincliler, A., & Guler, E.(2021).Seismic behavior of geosynthetic-reinforced retaining walls backfilled with cohesive soil", Geotextiles And Geomembranes, 49 (5): 1256–1269.
  • Linhares, R. M., Mirmoradi, S. H., & Ehrlich, M. (2021). Evaluation of the effect of surcharge on the behavior of geosynthetic-reinforced soil walls, Transportation Geotechnics, 31.
  • Rahmaninezhad, S. M. & Han, J.(2021). Lateral facing deflections of geosynthetic-reinforced retaining walls under footing loading", Transportation Geotechnics, 30.
  • Alhajj Chehade, H., Dias, D., Sadek, M., Jenck, O., & Hage Chehade, F. (2020). Upper bound seismic limit analysis of geosynthetic-reinforced unsaturated soil walls, Geotextiles And Geomembranes, 48 (4), 419–430.
  • Balaban, E., Smejda, A., & Onur, M. İ. (2020). Geosentetik Donatılı İstinat Duvarının Analitik, Deneysel ve Sonlu Elemanlar Yöntemleri ile Performans Analizi, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi,, 7 (2), 621–637.
  • Vibha, S. & Divya, P. V. (2020). Geosynthetic-Reinforced Soil Walls with Sustainable Backfills, Indian Geotechnical Journal, 1–10.
  • Pisini, S., Thammadi, S., & Shukla, S.(2021). Sustainability Study on Geosynthetic Reinforced Retaining Wall Construction, Ground Improvement and Reinforced Soil Structures, Springer, Singapore, 765–773.
  • Han, J., Jiang, Y., & Xu, C. (2017). Recent advances in geosynthetic-reinforced retaining walls for highway applications, Frontiers Of Structural And Civil Engineering,12 (2), 239–247.
  • Tatsuoka, F., Tateyama, M., Koseki, J., & Yonezawa, T. (2014). Geosynthetic-Reinforced Soil Structures for Railways in Japan, Transportation Infrastructure Geotechnology, 1 (1), 3–53.
  • Shukla, S. K. (2002). Geosynthetic applications—general aspects and selected case studies, Geosynthetics and their Applications, ThomasTelford publishing, 393-419.
  • Özkol, O. (2006). Design of Geosyntheticly Reinforced Retaining Structures, PhD Thesis, Istanbul Technical University, Institute of Science.
  • Berg, R., Christopher, B. R., & Naresh C., S. (2009). Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes.
  • Yılmaz, R. & Eskişar, T. (2009). Usage of Geosynthetic Products to Solve Geotechnical Problems and Their dvantages, İnşaat Mühendisleri Odası Yayınları, 437–452.
  • Can, S. (2017). Geosentetik Donatılı İstinat Duvarlarının Numerik Analizi ve Tasarım Aşamaları, Harran University.
  • Polat, A. (2020). Parametric Analysis on Geosynthetic Reinforced Retaining Wall, Balıkesir University.
  • Algın, H. M., Can, S., & Ekmen, A. B. (2016). Geosentetik Donatılı Zemin İstinat Duvarı Tasarımında Donatı Uzunluğunun Tahmini, Harran Üniversitesi Mühendislik Dergisi, 1 (2), 35–44.
  • Çiçek, E., Güler, E., & Yetimoğlu, T. (2015). Sedde Şevlerinin Geosentetik ile Donatılandırılmasının Stabiliteye Etkileri, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (1), 100–114.
  • Türköz, M. & Kaba, E. (2019). Heyela Stabi̇li̇zasyonund Ri̇ji̇t Ve Geosenteti̇k Donatili Duvarlarin Karşilaştirmal Anali̇zi̇ Ve Bi̇r Uygulama, Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi, 7 (2), 146–158.
  • Durukan, Z. & Tezcan, S. S. (1992). Cost analysis of reinforced soil walls, Geotextiles And Geomembranes, 11 (1), 29–43.
  • Code of practice for strengthened/reinforced soils and other fills.

Comparative Analysis of Geosynthetic Reinforced Earth Wall and Reinforced Concrete Retaining Wall: Kastamonu-Karabuk Highway Case Study

Year 2022, , 225 - 240, 30.06.2022
https://doi.org/10.35193/bseufbd.1006040

Abstract

Embankment is a frequently encountered application in road and railway constructions. In this study, reinforced concrete retaining wall, which is one of the traditional engineering structures and constructed to provide fill stabilization, and geosynthetic (geogrid) reinforced retaining structure were analyzed comparatively by considering cost, construction time, duration for service, service life, and aesthetics criteria. The comparisons were carried out on the engineering structures in two different locations on the same highway, which are under responsibility of the General Directorate of Highways (KGM). In the first location, a reinforced concrete retaining wall was designed instead of the existing geosynthetic reinforced wall, while a geosynthetic reinforced wall was designed instead of the existing reinforced concrete retaining wall in the second location. Cost analyses were made in line with KGM items. It was concluded that geosynthetic reinforced earth walls became advantageous in terms of cost, especially in parallel with the increase in height. In addition, it is revealed that geosynthetic reinforced walls are more advantageous when their performance is evaluated in terms of construction time, duration for service, service life and aesthetics criteria. It is thought that the data obtained from results of the study will contribute decision makers to decide the most appropriate engineering structure in terms of both performance and cost at the locations where filling stability problems arise in highway construction.

References

  • Aydın, U. (2019). Yüksek dolgularda geo-sentetik donatılı duvar ile hafifletme konsollu betonarme istinat duvarının kıyaslanması (Kastamonu-Karabük Yolu örneği), Karabuk University.
  • Manahiloh, K. N., Nejad, M. M., & Momeni, M. S. (2015). Optimization of Design Parameters and Cost of Geosynthetic-Reinforced Earth Walls Using Harmony Search Algorithm, International Journal Of Geosynthetics And Ground Engineering, 1(2), 1–12 (2015).
  • Vahedifard, F., Leshchinsky, B. A., Sehat, S., & Leshchinsky, D. (2014). Impact of Cohesion on Seismic Design of Geosynthetic-Reinforced Earth Structures, Journal Of Geotechnical And Geoenvironmental Engineering, 140 (6).
  • Basudhar, P. K., Vashistha, A., Deb, K., & Dey, A. (2007). Cost Optimization of Reinforced Earth Walls", Geotechnical And Geological Engineering, 26(1), 1–12.
  • Gaudio, D., Masini, L., & Rampello, S. (2018). A performance-based approach to design reinforced-earth retaining walls, Geotextiles And Geomembranes, 46 (4), 470–485.
  • Kashani, A. R., Saneirad, A., & Gandomi, A. H. (2019). Optimum design of reinforced earth walls using evolutionary optimization algorithms, Neural Computing And Applications, 32 (16).
  • Gaudio, D., Masini, L., & Rampello, S. (2018). Seismic Performance of Geosynthetic-Reinforced Earth Retaining Walls Subjected to Strong Ground Motions.
  • Xu, J., Du, X., & Yang, X. (2019). Stability analysis of 3D geosynthetic–reinforced earth structures composed of nonhomogeneous cohesive backfills, Soil Dynamics And Earthquake Engineering, 126.
  • Han, J. & Leshchinsky, D. (2006). Stability analyses of geosynthetic-reinforced earth structures using limit equilibrium and numerical methods.
  • Gaudio, D., Masini, L., & Rampello, S. (2021). A Procedure to Design Geosynthetic-Reinforced Earth-Retaining Walls Under Seismic Loadings.
  • Yang, S., Gao, Y., Cui, K., Zhang, F., & Wu, D. (2020). "Three-dimensional internal stability analysis of geosynthetic-reinforced earth structures considering seismic loading, Soil Dynamics And Earthquake Engineering, 130, 105979.
  • Belal, A. M. (1997). Finite Element Analysis of Geosynthetic Reinforced Soil Retaining Walls Subjected to Seismic Loading, The University of Mississippi The.
  • Aroni Hesari, S., Javankhoshdel, S., Payan, M., & Jamshidi Chenari, R. (2021). Pseudo-static internal stability analysis of geosynthetic-reinforced earth slopes using horizontal slices method, Geomechanics And Geoengineering, 1–26.
  • Akhlaghi, T. & Nikkar, A. (2014). Numerical analyses of dynamic response of geosynthetic-reinforced soil retaining wall, Geosystem Engineering, 17 (2), 142–149.
  • Rahmouni, O., Mabrouki, A., Benmeddour, D., & Mellas, M. (2016). A numerical investigation into the behavior of geosynthetic-reinforced soil segmental retaining walls, International Journal Of Geotechnical Engineering, 10 (5), 435–444.
  • Wu, J. & Pham, T. (2010). An analytical model for calculating lateral movement of a geosynthetic-reinforced soil (GRS) wall with modular block facing, International Journal Of Geotechnical Engineering, 4 (4), 527–535.
  • Mandal, J. N. & Jambale, K. S. (1991). Computer aided design of geosynthetic reinforced soil walls, Geotechnical And Geological Engineering, 9 (2), 139–151.
  • Djabri, M. & Benmebarek, S. (2016).FEM Analysis of Back-to-Back Geosynthetic-Reinforced Soil Retaining Walls, International Journal Of Geosynthetics And Ground Engineering, 2 (3), 26.
  • Kim, Y. S.& Won, M. S. (2005) "Deformation behaviors and finite element analyses of geosynthetic reinforced soil walls, KSCE Journal Of Civil Engineering, 9 (5), 363–369.
  • Başbuğ, E., Cengiz, C., & Güler, E. (2021).1-g Shaking table tests to determine the behavior of geosynthetic reinforced soil walls under seismic loads, Transportation Geotechnics, 30.
  • Lu, L., Ma, S., Wang, Z., & Zhang, Y.(2021). Experimental study of the performance of geosynthetics-reinforced soil walls under differential settlements, Geotextiles And Geomembranes, 49 (1), 97–108.
  • Kilic, I. E., Cengiz, C., Edincliler, A., & Guler, E.(2021).Seismic behavior of geosynthetic-reinforced retaining walls backfilled with cohesive soil", Geotextiles And Geomembranes, 49 (5): 1256–1269.
  • Linhares, R. M., Mirmoradi, S. H., & Ehrlich, M. (2021). Evaluation of the effect of surcharge on the behavior of geosynthetic-reinforced soil walls, Transportation Geotechnics, 31.
  • Rahmaninezhad, S. M. & Han, J.(2021). Lateral facing deflections of geosynthetic-reinforced retaining walls under footing loading", Transportation Geotechnics, 30.
  • Alhajj Chehade, H., Dias, D., Sadek, M., Jenck, O., & Hage Chehade, F. (2020). Upper bound seismic limit analysis of geosynthetic-reinforced unsaturated soil walls, Geotextiles And Geomembranes, 48 (4), 419–430.
  • Balaban, E., Smejda, A., & Onur, M. İ. (2020). Geosentetik Donatılı İstinat Duvarının Analitik, Deneysel ve Sonlu Elemanlar Yöntemleri ile Performans Analizi, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi,, 7 (2), 621–637.
  • Vibha, S. & Divya, P. V. (2020). Geosynthetic-Reinforced Soil Walls with Sustainable Backfills, Indian Geotechnical Journal, 1–10.
  • Pisini, S., Thammadi, S., & Shukla, S.(2021). Sustainability Study on Geosynthetic Reinforced Retaining Wall Construction, Ground Improvement and Reinforced Soil Structures, Springer, Singapore, 765–773.
  • Han, J., Jiang, Y., & Xu, C. (2017). Recent advances in geosynthetic-reinforced retaining walls for highway applications, Frontiers Of Structural And Civil Engineering,12 (2), 239–247.
  • Tatsuoka, F., Tateyama, M., Koseki, J., & Yonezawa, T. (2014). Geosynthetic-Reinforced Soil Structures for Railways in Japan, Transportation Infrastructure Geotechnology, 1 (1), 3–53.
  • Shukla, S. K. (2002). Geosynthetic applications—general aspects and selected case studies, Geosynthetics and their Applications, ThomasTelford publishing, 393-419.
  • Özkol, O. (2006). Design of Geosyntheticly Reinforced Retaining Structures, PhD Thesis, Istanbul Technical University, Institute of Science.
  • Berg, R., Christopher, B. R., & Naresh C., S. (2009). Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes.
  • Yılmaz, R. & Eskişar, T. (2009). Usage of Geosynthetic Products to Solve Geotechnical Problems and Their dvantages, İnşaat Mühendisleri Odası Yayınları, 437–452.
  • Can, S. (2017). Geosentetik Donatılı İstinat Duvarlarının Numerik Analizi ve Tasarım Aşamaları, Harran University.
  • Polat, A. (2020). Parametric Analysis on Geosynthetic Reinforced Retaining Wall, Balıkesir University.
  • Algın, H. M., Can, S., & Ekmen, A. B. (2016). Geosentetik Donatılı Zemin İstinat Duvarı Tasarımında Donatı Uzunluğunun Tahmini, Harran Üniversitesi Mühendislik Dergisi, 1 (2), 35–44.
  • Çiçek, E., Güler, E., & Yetimoğlu, T. (2015). Sedde Şevlerinin Geosentetik ile Donatılandırılmasının Stabiliteye Etkileri, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (1), 100–114.
  • Türköz, M. & Kaba, E. (2019). Heyela Stabi̇li̇zasyonund Ri̇ji̇t Ve Geosenteti̇k Donatili Duvarlarin Karşilaştirmal Anali̇zi̇ Ve Bi̇r Uygulama, Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi, 7 (2), 146–158.
  • Durukan, Z. & Tezcan, S. S. (1992). Cost analysis of reinforced soil walls, Geotextiles And Geomembranes, 11 (1), 29–43.
  • Code of practice for strengthened/reinforced soils and other fills.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil İbrahim Yumrutaş 0000-0002-3696-7016

İnan Keskin 0000-0003-2977-4352

Ulaş Aydın 0000-0002-3194-9337

Publication Date June 30, 2022
Submission Date October 7, 2021
Acceptance Date March 1, 2022
Published in Issue Year 2022

Cite

APA Yumrutaş, H. İ., Keskin, İ., & Aydın, U. (2022). Geosentetik Donatılı İstinat Duvarı ile Betonarme İstinat Duvarının Karşılaştırmalı Analizi: Kastamonu-Karabük Karayolu Örneği. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 225-240. https://doi.org/10.35193/bseufbd.1006040