Research Article
BibTex RIS Cite

Çelikler için Yüksek Korozyon Dayanımına Sahip Vanadyum Nitrür Kaplamalar

Year 2023, , 345 - 355, 30.11.2023
https://doi.org/10.35193/bseufbd.1219035

Abstract

Düşük korozyon dayanımı, alaşımlı çeliklerinden üretilmiş parçaların kullanım ömrünü sınırlamaktadır. Bu çalışmada Vanadyum nitrür (VN), termo reaktif biriktirmeyle AISI 4140 çeliği yüzeyine başarılı bir şekilde kaplanmıştır. Kaplamanın mikroyapısal, kimyasal ve korozyon özellikleri detaylı bir şekilde incelenmiş ve AISI 4140 çeliğinin özellikleriyle kıyaslanmıştır. Taramalı elektron mikroskobu (SEM) incelemeleri kaplanmış numunenin; VN tabakası, nitrürleme bölgesi ve altlık malzeme bölgesi olmak üzere üç bölgeden oluştuğunu göstermiştir. 1000 °C sıcaklık ve 2 saat kaplama parametreleri için kaplama kalınlığı yaklaşık 5.69 µm’dir. Enerji dağılımlı X-ışını spektroskopisi (EDS) analizlerine göre kaplama tabakasının yapısı Vanadyum ve Azot elementlerini içermektedir. X-ışınları difraksiyon (XRD) analizine göre kaplama VN bileşiğinden oluşmaktadır. Tafel ekstrapolasyonuna göre VN kaplamanın korozyon potansiyeli (Ekor)-0,604 V ölçülmüş olup,-0,717 V olan AISI 4140 çeliğinin Ekor değerine göre önemli miktarda yüksektir. Elektrokimyasal empedans spektroskopisine (EIS) göre kaplama çözünmesi 0.5 M NaCl sulu çözelti ortamındaki korozyonu yük kontrollüdür. Nyquist eğrileri kıyaslandığında VN kaplamanın korozyon dayanımı AISI 4140 çeliğininkinden daha yüksektir. Sonuçlara göre VN kaplamalar AISI 4140 çeliğinin çamur tahliyesinde kullanılan pompalar, kâğıt kesme makineleri ve zirai aletler gibi korozif ortamlarda kullanımı için ömrü artışı sağlayabilecek özelliktedir.

Thanks

Çalışmanın hazırlanmasında bilgi, tecrübe ve desteklerini esirgemeyen Prof. Dr. Uğur Şen, Prof. Dr. Şaduman Şen, Doç. Dr. Egemen Avcu ’ya teşekkürlerimi sunarım.

References

  • Attarzadeh N., Molaei M., Babaei K., & Fattah-alhosseini A. (2021). New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review, Surfaces, and Interfaces, 23, 100997.
  • Xu H., & Zhang Y. (2019) A Review on Conducting Polymers and Nanopolymer Composite Coatings for Steel Corrosion Protection Coatings, 9, 807.
  • Galedari S. A., Mahdavi A., Azarmi F., Huang Y., & McDonald A. (2019). A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures J Therm Spray Tech, 28, 645–77.
  • Bekmurzayeva A., Duncanson W. J., Azevedo H. S., & Kanayeva D. (2018). Surface modification of stainless steel for biomedical applications: Revisiting a century-old material Materials Science and Engineering: C, 93, 1073–89.
  • Ludwig G. A., Malfatti C. F., Schroeder R. M., Ferrari V. Z., & Muller I. L. (2019). WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion Surface and Coatings Technology, 377, 124918.
  • Fenker M., Balzer M. & Kappl H., (2014). Corrosion protection with hard coatings on steel: Past approaches and current research efforts Surface and Coatings Technology, 257, 182–205.
  • The thermo-reactive deposition and diffusion process for coating steels to improve wear resistance Thermochemical Surface Engineering of Steels, 703–35.
  • Castillejo F. E., Marulanda D. M., Olaya J. J., & Alfonso J. E. (2014). Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD Surface and Coatings Technology, 254, 104–11.
  • Mariani F. E., Takeya G. S., Lombardi A. N., Picone C. A., & Casteletti L. C. (2020). Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments Surface and Coatings Technology, 397, 126050.
  • OrjuelaG. A., Rincón R. & Olaya J. J., (2014). Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition Surface and Coatings Technology, 259, 667–75.
  • Aissani L., Alhussein A., Nouveau C., Ghelani L., & Zaabat M. (2019). Influence of film thickness and ArN2 plasma gas on the structure and performance of sputtered vanadium nitride coatings Surface and Coatings Technology, 378, 124948.
  • Suszko T., Gulbiński W., Urbanowicz A., & Gulbiński W. (2011). Preferentially oriented vanadium nitride films deposited by magnetron sputtering Materials Letters, 65, 2146–8.
  • Biesuz M., & Sglavo V. M. (2016). Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel Surface and Coatings Technology, 286, 319–26.
  • Şen U., Uzun M., & Şen Ş. (2012). Tribological Properties of Vanadium Nitride Coated AISI 52100 Steel Advanced Materials Research, 445, 643–8.
  • Kovacı H., Hacısalihoğlu İ., Yetim A. F., & Çelik A. (2019). Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of AISI 4140 low-alloy steel Surface and Coatings Technology, 358, 256–65.
  • Li C. X., Georges J. and Li X. Y. (2002). Active screen plasma nitriding of austenitic stainless steel Surface Engineering. 18 453–7.
  • Ozturk M., Husem F., Karademir I., Maleki E., Amanov A., & Unal O. (2023). Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding Vacuum, 207, 111552.
  • Kurt B., Özdoğan L., Güney B., Bölükbaşı Ö. S., & Günen A. (2020). Characterization and wear behavior of TiBC coatings formed by thermo-reactive diffusion technique on AISI D6 steel Surface and Coatings Technology, 385, 125332.
  • Lobe S., Dellen C., Finsterbusch M., Gehrke H. G., Sebold D., Tsai C. L., Uhlenbruck S., & Guillon O. (2016). Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries Journal of Power Sources, 307, 684–9.
  • Sen U. (2005). Friction and wear properties of thermo-reactive diffusion coatings against titanium nitride coated steels Materials & Design, 26, 167–74.
  • Günen A., Kalkandelen M., Gök M. S., Kanca E., Kurt B., Karakaş M. S., Karahan İ. H., & Çetin M. (2020). Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion Surface and Coatings Technology, 402, 126402.
  • Wu X., Gao D., Wang P., Yu H., & Yu J. (2019). NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution Carbon, 153, 757–66.
  • Fawazul R., & Mochtar M. A. (2019). Effect of FeV Residual Powders as an Innovation of Thermo Reactive Deposition Process (TRD) with Material Balance Method to Carbide Surface Characteristics on SUJ2 Tool Steel IOP Conf. Ser.: Mater. Sci. Eng., 553, 012018.
  • Sridhar T. M., Kamachi Mudali U. & Subbaiyan M. (2003). Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel Corrosion Science, 45 237–52.
  • Guilemany J. M., Espallargas N., Suegama P. H., & Benedetti A. V. (2006). Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings Corrosion Science, 48 2998–3013.
  • Sun Y. P., Yang C. T., Yang C. G., Xu D. K., Li Q., Yin L., Qiu C. S., liu D., & Yang K. (2019). Stern–Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms Acta Metall. Sin. (Engl. Lett.), 32, 1483–9.
  • Allahkaram S. R., Nazari M. H., Mamaghani S. & Zarebidaki A. (2011). Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid Materials & Design, 32, 750–5.
  • Mohammadloo H. E., Sarabi A. A., Alvani A. A. S., Salimi R., & Sameie H. (2013). The effect of solution temperature and pH on corrosion performance and morphology of nanoceramic-based conversion thin film Materials and Corrosion, 64, 535–43.
  • Ramkumar T., Selvakumar M., Mohanraj M., Chandramohan P., & Narayanasamy P. (2020). Microstructure and Corrosion Behavior of ZnO-Mg Coating on AISI 4140 Steel Fabricated by Spray Coating J. of Materi Eng and Perform, 29, 5796–806.
  • Joseph A., Gautham V., Akshay K. S., & Sajith V. (2022). 2D MoS2-hBN hybrid coatings for enhanced corrosion resistance of solid lubricant coatings Surface and Coatings Technology, 443, 128612.
  • Castillejo F., Olaya J. J., & Alfonso J. E. (2019). Wear and Corrosion Resistance of Chromium–Vanadium Carbide Coatings Produced via Thermo-Reactive Deposition Coatings, 9 215.
  • Su H., Wei S., Liang Y., Wang Y., Wang B., & Yuan Y. (2020). Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations Journal of Electroanalytical Chemistry, 863 114056.
  • Ebrahimi M., Sohi M. H., Raouf A. H. & Mahboubi F. (2010). Effect of plasma nitriding temperature on the corrosion behavior of AISI 4140 steel before and after oxidation Surface and Coatings Technology, 205 S261–6.
  • Hara S., Kamimura T., Miyuki H., & Yamashita M. (2007). Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge Corrosion Science, 49 1131–42.
  • Je H., & Kimura A. (2014). Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents Corrosion Science, 78 193–9.
  • Caicedo J. C., Zambrano G., Aperador W., Escobar-Alarcon L., and Camps E. (2011). Mechanical and electrochemical characterization of vanadium nitride (VN) thin films Applied Surface Science, 258 312–20.
  • Escobar C. A., Caicedo J. C., and Aperador W. (2014). Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size Journal of Physics and Chemistry of Solids, 75 23–30.
  • Peng X., Huang C., Dai J., & Liu Y. (2022). Uniform cobalt grafted on vanadium nitride as a high efficient oxygen evolution reaction catalyst International Journal of Hydrogen Energy, 47, 4386–93.

Vanadium Nitride Coatings with High Corrosion Resistance for Steels

Year 2023, , 345 - 355, 30.11.2023
https://doi.org/10.35193/bseufbd.1219035

Abstract

Low corrosion resistance limits the service life of parts made of alloy steels. In this study, Vanadium nitride (VN) was successfully coated on the surface of AISI 4140 steel by thermo-reactive deposition. The microstructural, chemical, and corrosion properties of the coating were studied in detail and compared with those of AISI 4140 steel. Scanning electron microscopy (SEM) examinations showed that the coated sample consists of three regions: the VN layer, the nitriding region, and the substrate material region. For 1000 °C temperature and 2 h coating parameters, the layer thickness is 5.69 µm. X-ray diffraction (XRD) analysis show that the coating consists of VN compound. According to Tafel extrapolation, the corrosion potential (Ecorr) of the VN coating was measured -0.604 V, which is significantly higher than that of AISI 4140 steel, which is -0.717 V. According to electrochemical impedance spectroscopy (EIS), coating corrodes under charge-controlled in 0.5 M NaCl aqueous solution. When Nyquist curves are compared, the corrosion resistance of VN coating is higher than that of AISI 4140 steel. According to the results, VN coatings can increase the life of AISI 4140 steel for use in corrosive environments, such as pumps used in sludge discharge, paper cutting machines, and agricultural tools.

References

  • Attarzadeh N., Molaei M., Babaei K., & Fattah-alhosseini A. (2021). New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review, Surfaces, and Interfaces, 23, 100997.
  • Xu H., & Zhang Y. (2019) A Review on Conducting Polymers and Nanopolymer Composite Coatings for Steel Corrosion Protection Coatings, 9, 807.
  • Galedari S. A., Mahdavi A., Azarmi F., Huang Y., & McDonald A. (2019). A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures J Therm Spray Tech, 28, 645–77.
  • Bekmurzayeva A., Duncanson W. J., Azevedo H. S., & Kanayeva D. (2018). Surface modification of stainless steel for biomedical applications: Revisiting a century-old material Materials Science and Engineering: C, 93, 1073–89.
  • Ludwig G. A., Malfatti C. F., Schroeder R. M., Ferrari V. Z., & Muller I. L. (2019). WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion Surface and Coatings Technology, 377, 124918.
  • Fenker M., Balzer M. & Kappl H., (2014). Corrosion protection with hard coatings on steel: Past approaches and current research efforts Surface and Coatings Technology, 257, 182–205.
  • The thermo-reactive deposition and diffusion process for coating steels to improve wear resistance Thermochemical Surface Engineering of Steels, 703–35.
  • Castillejo F. E., Marulanda D. M., Olaya J. J., & Alfonso J. E. (2014). Wear and corrosion resistance of niobium–chromium carbide coatings on AISI D2 produced through TRD Surface and Coatings Technology, 254, 104–11.
  • Mariani F. E., Takeya G. S., Lombardi A. N., Picone C. A., & Casteletti L. C. (2020). Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments Surface and Coatings Technology, 397, 126050.
  • OrjuelaG. A., Rincón R. & Olaya J. J., (2014). Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition Surface and Coatings Technology, 259, 667–75.
  • Aissani L., Alhussein A., Nouveau C., Ghelani L., & Zaabat M. (2019). Influence of film thickness and ArN2 plasma gas on the structure and performance of sputtered vanadium nitride coatings Surface and Coatings Technology, 378, 124948.
  • Suszko T., Gulbiński W., Urbanowicz A., & Gulbiński W. (2011). Preferentially oriented vanadium nitride films deposited by magnetron sputtering Materials Letters, 65, 2146–8.
  • Biesuz M., & Sglavo V. M. (2016). Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel Surface and Coatings Technology, 286, 319–26.
  • Şen U., Uzun M., & Şen Ş. (2012). Tribological Properties of Vanadium Nitride Coated AISI 52100 Steel Advanced Materials Research, 445, 643–8.
  • Kovacı H., Hacısalihoğlu İ., Yetim A. F., & Çelik A. (2019). Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of AISI 4140 low-alloy steel Surface and Coatings Technology, 358, 256–65.
  • Li C. X., Georges J. and Li X. Y. (2002). Active screen plasma nitriding of austenitic stainless steel Surface Engineering. 18 453–7.
  • Ozturk M., Husem F., Karademir I., Maleki E., Amanov A., & Unal O. (2023). Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding Vacuum, 207, 111552.
  • Kurt B., Özdoğan L., Güney B., Bölükbaşı Ö. S., & Günen A. (2020). Characterization and wear behavior of TiBC coatings formed by thermo-reactive diffusion technique on AISI D6 steel Surface and Coatings Technology, 385, 125332.
  • Lobe S., Dellen C., Finsterbusch M., Gehrke H. G., Sebold D., Tsai C. L., Uhlenbruck S., & Guillon O. (2016). Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries Journal of Power Sources, 307, 684–9.
  • Sen U. (2005). Friction and wear properties of thermo-reactive diffusion coatings against titanium nitride coated steels Materials & Design, 26, 167–74.
  • Günen A., Kalkandelen M., Gök M. S., Kanca E., Kurt B., Karakaş M. S., Karahan İ. H., & Çetin M. (2020). Characteristics and high temperature wear behavior of chrome vanadium carbide composite coatings produced by thermo-reactive diffusion Surface and Coatings Technology, 402, 126402.
  • Wu X., Gao D., Wang P., Yu H., & Yu J. (2019). NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution Carbon, 153, 757–66.
  • Fawazul R., & Mochtar M. A. (2019). Effect of FeV Residual Powders as an Innovation of Thermo Reactive Deposition Process (TRD) with Material Balance Method to Carbide Surface Characteristics on SUJ2 Tool Steel IOP Conf. Ser.: Mater. Sci. Eng., 553, 012018.
  • Sridhar T. M., Kamachi Mudali U. & Subbaiyan M. (2003). Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel Corrosion Science, 45 237–52.
  • Guilemany J. M., Espallargas N., Suegama P. H., & Benedetti A. V. (2006). Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings Corrosion Science, 48 2998–3013.
  • Sun Y. P., Yang C. T., Yang C. G., Xu D. K., Li Q., Yin L., Qiu C. S., liu D., & Yang K. (2019). Stern–Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms Acta Metall. Sin. (Engl. Lett.), 32, 1483–9.
  • Allahkaram S. R., Nazari M. H., Mamaghani S. & Zarebidaki A. (2011). Characterization and corrosion behavior of electroless Ni–P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid Materials & Design, 32, 750–5.
  • Mohammadloo H. E., Sarabi A. A., Alvani A. A. S., Salimi R., & Sameie H. (2013). The effect of solution temperature and pH on corrosion performance and morphology of nanoceramic-based conversion thin film Materials and Corrosion, 64, 535–43.
  • Ramkumar T., Selvakumar M., Mohanraj M., Chandramohan P., & Narayanasamy P. (2020). Microstructure and Corrosion Behavior of ZnO-Mg Coating on AISI 4140 Steel Fabricated by Spray Coating J. of Materi Eng and Perform, 29, 5796–806.
  • Joseph A., Gautham V., Akshay K. S., & Sajith V. (2022). 2D MoS2-hBN hybrid coatings for enhanced corrosion resistance of solid lubricant coatings Surface and Coatings Technology, 443, 128612.
  • Castillejo F., Olaya J. J., & Alfonso J. E. (2019). Wear and Corrosion Resistance of Chromium–Vanadium Carbide Coatings Produced via Thermo-Reactive Deposition Coatings, 9 215.
  • Su H., Wei S., Liang Y., Wang Y., Wang B., & Yuan Y. (2020). Pitting behaviors of low-alloy high strength steel in neutral 3.5 wt% NaCl solution based on in situ observations Journal of Electroanalytical Chemistry, 863 114056.
  • Ebrahimi M., Sohi M. H., Raouf A. H. & Mahboubi F. (2010). Effect of plasma nitriding temperature on the corrosion behavior of AISI 4140 steel before and after oxidation Surface and Coatings Technology, 205 S261–6.
  • Hara S., Kamimura T., Miyuki H., & Yamashita M. (2007). Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge Corrosion Science, 49 1131–42.
  • Je H., & Kimura A. (2014). Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents Corrosion Science, 78 193–9.
  • Caicedo J. C., Zambrano G., Aperador W., Escobar-Alarcon L., and Camps E. (2011). Mechanical and electrochemical characterization of vanadium nitride (VN) thin films Applied Surface Science, 258 312–20.
  • Escobar C. A., Caicedo J. C., and Aperador W. (2014). Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size Journal of Physics and Chemistry of Solids, 75 23–30.
  • Peng X., Huang C., Dai J., & Liu Y. (2022). Uniform cobalt grafted on vanadium nitride as a high efficient oxygen evolution reaction catalyst International Journal of Hydrogen Energy, 47, 4386–93.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Plating Technology
Journal Section Articles
Authors

Eray Abakay 0000-0003-2058-339X

Publication Date November 30, 2023
Submission Date December 14, 2022
Acceptance Date March 24, 2023
Published in Issue Year 2023

Cite

APA Abakay, E. (2023). Çelikler için Yüksek Korozyon Dayanımına Sahip Vanadyum Nitrür Kaplamalar. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(2), 345-355. https://doi.org/10.35193/bseufbd.1219035