Research Article
BibTex RIS Cite

AB2O4 Spinel Tipi Yüksek-Entropili Oksitlerin Sentezi ve Elektrokimyasal Performansları

Year 2024, , 86 - 92, 31.05.2024
https://doi.org/10.35193/bseufbd.1249131

Abstract

Yüksek entropili oksitler, sahip oldukları yüksek performanslı lityum depolama özellikleri sayesinde, araştırmacılar tarafından yoğun bir şekilde çalışılmaktadır. Bu çalışmada da Li-iyon pillerde alternatif anot malzemesi olarak kullanılması öngörülen spinel yapılı yüksek entropili oksitler olan (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 ve (Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)Fe2O4, geleneksel katı hal yöntemiyle 1300 °C’ de sentezlenmiştir. Sentezlenen oksitlerin yapısal karakterizasyonları XRD, SEM ve FTIR teknikleri kullanılarak gerçekleştirilmiştir. Ardından Li-iyon yarı hücrelerde anot olarak elektrokimyasal performansları belirlenmiştir. (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 ve (Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)Fe2O4 elektrotlarının ilk deşarj kapasiteleri sırasıyla 1688 mA sa. g-1 ve 1265 mA sa. g-1 olup bunlara karşılık gelen başlangıç kolumbik verimlilikleri de %80,8 ve %84,4 olarak belirlenmiştir. Numuneler yapılarındaki elektrokimyasal olarak aktif/inaktif katyon oranlarından dolayı çevrim kararlılığı ve kapasite açısından farklı performanslar sergilemiştir. Bu nedenle, bu çalışma, Li-iyon piller için çeşitli kimyasal kombinasyonlar ile tasarlanacak yeni yüksek entropili oksit esaslı anotlarının geliştirilmesi için bir bakış açısı sunmaktadır.

References

  • Fichtner, M. (2022). Recent Research and Progress in Batteries for Electric Vehicles, Batteries and Supercaps, 5, 1–9.
  • Kim, T., Song, W., Son, D. Y., Ono, L. K., & Qi, Y. (2019). Lithium-ion batteries: outlook on present, future, and hybridized Technologies, Journal of Materials Chemistry A, 7, 2942–2964.
  • Bresser, D., Passerini, S., & Scrosati, B. (2016). Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy and Environmental Science, 9(11), 3348–3367.
  • Ye, Z., Qiu, L., Yang, W., Wu, Z., Liu, Y., Wang, G., Song, Y., Zhong, B., & Guo, X. (2021). Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries, Chemistry - A European Journal, 27(13), 4249–4269.
  • Zhang, H., Yang, Y., Ren, D., Wang, L., & He, X. (2021). Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Materials, 36, 147–170.
  • Puthusseri, D., Wahid, M., & Ogale, S. (2018). Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions, ACS Omega, 3(4), 4591–4601.
  • Cabana, J., Monconduit, L., Larcher, D., & Palacín, M. R. (2010). Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions, Advanced Materials, 22(35), 170–192.
  • Brahlek, M., Gazda, M., Keppens, V., Mazza, A. R., McCormack, S. J., Mielewczyk-Gryń, A., Musico, B., Page, K., Rost, C. M., Sinnott, S. B., Toher, C., Ward, T. Z., & Yamamoto, A. (2022). What is in a name: Defining “high entropy” oxides. APL Materials, 10(11).
  • Zhang, R.-Z.; Reece, M. J. Review of High Entropy Ceramics: Design, Synthesis, Structure and Properties. J. Mater. Chem. A 2019, 7, 22148– 22162.
  • Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., & Maria, J. P. (2015). Entropy-stabilized oxides. Nature Communications, 6, 1–8.
  • Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S. S., Hahn, H., & Breitung, B. (2018). High entropy oxides for reversible energy storage, Nature Communications, 9(1).
  • Wang, D., Jiang, S., Duan, C., Mao, J., Dong, Y., Dong, K., Wang, Z., Luo, S., Liu, Y., & Qi, X. (2020). Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance, Journal of Alloys and Compounds, 844, 156158.
  • Chen, H., Qiu, N., Wu, B., Yang, Z., Sun, S., & Wang, Y. (2020). A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries, RSC Advances, 10(16), 9736–9744.
  • Lökçü, E., Toparli, Ç., & Anik, M. (2020). Electrochemical Performance of (MgCoNiZn)1-xLixO High-Entropy Oxides in Lithium-Ion Batteries, ACS Applied Materials and Interfaces, 12(21), 23860–23866.
  • Bayraktar, D. O., Lökçü, E., Ozgur, C., Erdil, T., & Toparli, C. (2022). Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high-entropy oxides for Li-ion batteries, International Journal of Energy Research, July, 22124–22133.
  • Xiao, B., Wu, G., Wang, T., Wei, Z., Sui, Y., Shen, B., Qi, J., Wei, F., Meng, Q., Ren, Y., Xue, X., Zheng, J., Mao, J., & Dai, K. (2021). High entropy oxides (FeNiCrMnX)3O4 (X=Zn, Mg) as anode materials for lithium ion batteries, Ceramics International, 47(24), 33972–33977.
  • Hao, A., & Ning, X. (2021). Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond, Frontiers in Materials, 8, 1–9.
  • Li, H., Zhou, Y., Liang, Z., Ning, H., Fu, X., Xu, Z., Qiu, T., Xu, W., Yao, R., & Peng, J. (2021). High-Entropy Oxides: Advanced Research on Electrical Properties, Coatings, 11 (6), 1–17.
  • Mao, A., Xiang, H. Z., Zhang, Z. G., Kuramoto, K., Zhang, H., & Jia, Y. (2020). A New Class of Spinel High-Entropy Oxides with Controllable Magnetic Properties, J. Magn. Magn. Mater., 497, 1–5.
  • Sun, Z., Zhao, Y., Sun, C., Ni, Q., Wang, C., & Jin, H. (2022). High Entropy Spinel-Structure Oxide for Electrochemical Application. Chem. Eng. J., 431 (P4), 133448.
  • Yuvaraj, S., Selvan, R. K., & Lee, Y. S. (2016). An overview of AB2O4 and A2BO4 structured negative electrodes for advanced Li-ion batteries. RSC Advances, 6(26), 21448–21474.
  • Hao, A., & Ning, X. (2021). Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond, Frontiers in Materials, 8, 1–9.
  • Dąbrowa, J., Stygar, M., Mikuła, A., Knapik, A., Mroczka, K., Tejchman, W., Danielewski, M., & Martin, M. (2018). Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216, 32–36.
  • Shabani, M., Saebnoori, E., Hassanzadeh-tabrizi, S. A., & Bakhsheshi-Rad, H. R. (2021). Novel synthesis of nickel ferrite magnetic nanoparticles by an in liquid plasma, Journal of Materials Science: Materials in Electronics, 32(8), 10424–10442.
  • Fathy, M. A., Kamel, A. H., & Hassan, S. S. M. (2022). Novel magnetic nickel ferrite nanoparticles modified with poly(aniline-co-o-toluidine) for the removal of hazardous 2,4-dichlorophenol pollutant from aqueous solutions, RSC Advances, 12(12), 7433–7445.
  • Li, X., Sun, X., Hu, X., Fan, F., Cai, S., Zheng, C., & Stucky, G. D. (2020). Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries, Nano Energy, 77, 105143.

Synthesis and Electrochemical Performances of AB2O4 Spinel Type High-Entropy Oxides

Year 2024, , 86 - 92, 31.05.2024
https://doi.org/10.35193/bseufbd.1249131

Abstract

Due to their high-performance lithium storage properties, high-entropy oxides are being intensively studied by researchers. In this study, spinel structured high entropy oxides (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 and (Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)Fe2O4, which are projected to be used as alternative anode materials in Li-ion batteries, were synthesized using the conventional solid-state method at 1300 °C. The structural characterization of the synthesized oxides was performed using XRD, SEM, and FTIR techniques. Subsequently, the electrochemical performances of the oxides as anodes in Li-ion half-cells were determined. The initial discharge capacities of (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4 and (Fe0.2Co0.2Ni0.2Cr0.2Mn0.2)Fe2O4 electrodes are 1688 mA h g-1 and 1265 mA h g-1 respectively and their corresponding initial columbic efficiencies were calculated as 80.8% and 84.4%. Due to the ratios of electrochemically active/inactive cations in their structures, they displayed varying cycling stability and capacity performances. Thus, this study provides a perspective for the development of new high-entropy oxide- based anodes for lithium-ion batteries to be designed with various chemical combinations.

References

  • Fichtner, M. (2022). Recent Research and Progress in Batteries for Electric Vehicles, Batteries and Supercaps, 5, 1–9.
  • Kim, T., Song, W., Son, D. Y., Ono, L. K., & Qi, Y. (2019). Lithium-ion batteries: outlook on present, future, and hybridized Technologies, Journal of Materials Chemistry A, 7, 2942–2964.
  • Bresser, D., Passerini, S., & Scrosati, B. (2016). Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy and Environmental Science, 9(11), 3348–3367.
  • Ye, Z., Qiu, L., Yang, W., Wu, Z., Liu, Y., Wang, G., Song, Y., Zhong, B., & Guo, X. (2021). Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries, Chemistry - A European Journal, 27(13), 4249–4269.
  • Zhang, H., Yang, Y., Ren, D., Wang, L., & He, X. (2021). Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Materials, 36, 147–170.
  • Puthusseri, D., Wahid, M., & Ogale, S. (2018). Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions, ACS Omega, 3(4), 4591–4601.
  • Cabana, J., Monconduit, L., Larcher, D., & Palacín, M. R. (2010). Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions, Advanced Materials, 22(35), 170–192.
  • Brahlek, M., Gazda, M., Keppens, V., Mazza, A. R., McCormack, S. J., Mielewczyk-Gryń, A., Musico, B., Page, K., Rost, C. M., Sinnott, S. B., Toher, C., Ward, T. Z., & Yamamoto, A. (2022). What is in a name: Defining “high entropy” oxides. APL Materials, 10(11).
  • Zhang, R.-Z.; Reece, M. J. Review of High Entropy Ceramics: Design, Synthesis, Structure and Properties. J. Mater. Chem. A 2019, 7, 22148– 22162.
  • Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., Jones, J. L., Curtarolo, S., & Maria, J. P. (2015). Entropy-stabilized oxides. Nature Communications, 6, 1–8.
  • Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S. S., Hahn, H., & Breitung, B. (2018). High entropy oxides for reversible energy storage, Nature Communications, 9(1).
  • Wang, D., Jiang, S., Duan, C., Mao, J., Dong, Y., Dong, K., Wang, Z., Luo, S., Liu, Y., & Qi, X. (2020). Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance, Journal of Alloys and Compounds, 844, 156158.
  • Chen, H., Qiu, N., Wu, B., Yang, Z., Sun, S., & Wang, Y. (2020). A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries, RSC Advances, 10(16), 9736–9744.
  • Lökçü, E., Toparli, Ç., & Anik, M. (2020). Electrochemical Performance of (MgCoNiZn)1-xLixO High-Entropy Oxides in Lithium-Ion Batteries, ACS Applied Materials and Interfaces, 12(21), 23860–23866.
  • Bayraktar, D. O., Lökçü, E., Ozgur, C., Erdil, T., & Toparli, C. (2022). Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high-entropy oxides for Li-ion batteries, International Journal of Energy Research, July, 22124–22133.
  • Xiao, B., Wu, G., Wang, T., Wei, Z., Sui, Y., Shen, B., Qi, J., Wei, F., Meng, Q., Ren, Y., Xue, X., Zheng, J., Mao, J., & Dai, K. (2021). High entropy oxides (FeNiCrMnX)3O4 (X=Zn, Mg) as anode materials for lithium ion batteries, Ceramics International, 47(24), 33972–33977.
  • Hao, A., & Ning, X. (2021). Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond, Frontiers in Materials, 8, 1–9.
  • Li, H., Zhou, Y., Liang, Z., Ning, H., Fu, X., Xu, Z., Qiu, T., Xu, W., Yao, R., & Peng, J. (2021). High-Entropy Oxides: Advanced Research on Electrical Properties, Coatings, 11 (6), 1–17.
  • Mao, A., Xiang, H. Z., Zhang, Z. G., Kuramoto, K., Zhang, H., & Jia, Y. (2020). A New Class of Spinel High-Entropy Oxides with Controllable Magnetic Properties, J. Magn. Magn. Mater., 497, 1–5.
  • Sun, Z., Zhao, Y., Sun, C., Ni, Q., Wang, C., & Jin, H. (2022). High Entropy Spinel-Structure Oxide for Electrochemical Application. Chem. Eng. J., 431 (P4), 133448.
  • Yuvaraj, S., Selvan, R. K., & Lee, Y. S. (2016). An overview of AB2O4 and A2BO4 structured negative electrodes for advanced Li-ion batteries. RSC Advances, 6(26), 21448–21474.
  • Hao, A., & Ning, X. (2021). Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond, Frontiers in Materials, 8, 1–9.
  • Dąbrowa, J., Stygar, M., Mikuła, A., Knapik, A., Mroczka, K., Tejchman, W., Danielewski, M., & Martin, M. (2018). Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216, 32–36.
  • Shabani, M., Saebnoori, E., Hassanzadeh-tabrizi, S. A., & Bakhsheshi-Rad, H. R. (2021). Novel synthesis of nickel ferrite magnetic nanoparticles by an in liquid plasma, Journal of Materials Science: Materials in Electronics, 32(8), 10424–10442.
  • Fathy, M. A., Kamel, A. H., & Hassan, S. S. M. (2022). Novel magnetic nickel ferrite nanoparticles modified with poly(aniline-co-o-toluidine) for the removal of hazardous 2,4-dichlorophenol pollutant from aqueous solutions, RSC Advances, 12(12), 7433–7445.
  • Li, X., Sun, X., Hu, X., Fan, F., Cai, S., Zheng, C., & Stucky, G. D. (2020). Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries, Nano Energy, 77, 105143.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ersu Lökçü 0000-0002-1972-627X

Publication Date May 31, 2024
Submission Date February 8, 2023
Acceptance Date August 28, 2023
Published in Issue Year 2024

Cite

APA Lökçü, E. (2024). AB2O4 Spinel Tipi Yüksek-Entropili Oksitlerin Sentezi ve Elektrokimyasal Performansları. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 86-92. https://doi.org/10.35193/bseufbd.1249131