Research Article
BibTex RIS Cite

Lineer ve Lineer Olmayan Flor Katkılanmış Lityum Topaklarının Optik Özelliklerinin İncelenmesi

Year 2019, , 146 - 152, 30.09.2019
https://doi.org/10.35193/bseufbd.588173

Abstract

Bir flor atom katkılanmış lityum
topaklarının lineer (Li
nF, n=1-8) ve lineer olmayan (LinF,
n=2-8)
 kararlı yapılarının optik
özellikleri, hibrit-Yoğunluk Fonksiyonel Teorisi (h-DFT) yardımıyla kuramsal
olarak araştırılmıştır. Lineer Li
nF (n=1-8) topaklarının en kararlı
izomerik yapıları
Becke 3 Lee-Yang-Parr (B3LYP) fonksiyoneli
ve Los Alamos National Laboratory -2 double zeta (
Lanl2dz) temel seti kullanılarak elde edilmiştir.
Literatürde rapor edilen lineer olmayan Li
nF (n=2-8) topaklarının taban
durumu geometrik yapıları h-DFT / B3LYP / Lanl2dz teori seviyesinde kararlılıkları
test edilmiştir. Elde edilen lineer ve lineer olmayan topakların global minimum
yapılarına ait
dipol moment (µ),
statik ortalama polarizebilite (<α>), anizotropik polarizebilite (∆α) ve
birinci dereceden statik toplam moleküler hiperpolarizebilite (β
0)
değerleri yine aynı metot ve temel set ile incelendi. Bu çalışma, yeni lineer
ve lineer olmayan optik malzemelerin veya uygulamaların tasarımında çalışan deneysel
araştırmacılara faydalı optik bilgiler verebilir.

References

  • Linden D. (1995). Handbook of Batteries, 2nd ed., McGraw-Hill, New York.
  • Şentürk, Ş. (2011). A Density Functional Study of LinCl (n=1–7) Clusters. Z. Naturforsch. A, 66, 372-376.
  • Şentürk Ş., Ünal, A., & Kalfa, O.M. (2013). Density functional study of bromine doped lithium clusters. Comput. Theor. Chem., 1023, 46-50.
  • Srivastava, A.K., & Misra, N. (2015). Nonlinear optical behavior of LinF (n=2-5) superalkali clusters. J. Mol. Model., 21, 305.
  • Milovanović, M., Veličković, S., Veljković, F., & Jerosimić, S. (2017). Structure and stability of small lithium-chloride LinClm(0,1+) (n≥m, n= 1–6, m= 1–3) clusters. Phys. Chem. Chem. Phys., 19, 30481-30497.
  • Srivastava, A.K., & Misra, N. (2016). Remarkable NLO responses of hyperalkalized species: the size effect and atomic number dependence. New J. Chem., 40, 5467-5472.
  • Velickovic, S.R., Koteski, V.J., Belosevic Cavor, J.N., Djordjevic, V.R., Cveticanin, J.M., Djustebek, J.B., Veljkovic, M.V., & Neskovic, O.M. (2007). Experimental and theoretical investigation of new hypervalent molecules LinF (n=2-4). Chem. Phys. Lett., 448, 151-155.
  • Ünal, A., & Kotan, B. (2018). A DFT based study of geometries, stabilities and electronic properties of LinF (n=1-8) clusters. Main Group Chem., 17, 267-272.
  • Dustebek, J., Velickovic, S.R., Veljkovic, F.M., & Veljkovic, M.V. (2012). Production of heterogeneous superalkali clusters LinF(n=2-6) by Knudsen cell Mass Spectrometry. Dig. J. Nanomater Bios., 7, 1365-1372.
  • Lanaro, G., & Patey, G.N. (2017). Crystal structures of model lithium halides in bulk phase and in clusters. J. Chem. Phys., 146, 154501.
  • Moreira, N.L., Brito, B.G.A., Rabelo, J.N.T., & Cândido, L. (2016). Quantum Monte Carlo study of the energetics of small hydrogenated and fluoride lithium clusters. J. Comput. Chem., 37, 1534-1536.
  • Milonavić, M.Z., & Jerosimić, S.V. (2014). Theoretical investigation of geometry and stability of small lithium-iodide LinI (n=2-6) clusters. Int. J. Quantum Chem., 114, 192-208.
  • Gutsev, G.L., & Boldryev, A.I. (1981). DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”. Chem. Phys., 56, 277-283.
  • Gutsev, G.L., & Boldryev, A.I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations, Chem. Phys. Lett., 92, 262-266.
  • Rehm, E., Boldryev, A.I ., & Schleyer, P.v.R.(1992). Ab initio study of superalkalis. First ionization potentials and thermodynamic stability. Inorg. Chem. 31, 4834-4842.
  • Li, Y., & Wu, D. (2010). Theoretical study on static first hyperpolarizabilities of hypervalent compounds FnLin+1 (n = 1–3). Gaodeng Xuexiao Huaxue Xuebao, 31, 1811-1814.
  • Frisch, M.J., et al., Gaussian 09 Revision A.1, Gaussian Inc., Wallingford, CT, Gaussian, Inc. 2009.
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648-5652.
  • Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.
  • Kotan, B. (2018). Flor katkılı lityum topaklarının en düşük enerjili yapılarının araştırılması. Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik.
  • Cohen, H.D., & Roothaan, C.C. (1965). Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems. J. Chem. Phys., 43, S34-S39.
  • Pearson, R. G. (1963). Hard and Soft Acids and Bases. J. Am. Chem. Soc., 85, 3533-3539.

The Investigation of Optical Properties of Linear and Non-linear Fluorine-Doped Lithium Clusters

Year 2019, , 146 - 152, 30.09.2019
https://doi.org/10.35193/bseufbd.588173

Abstract

The optical features of linear (LinF, n = 1-8) and non-linear
(Li
nF, n = 2-8) stable structures of fluorine-doped lithium clusters
were theoretically investigated with the help of hybrid-Density Functional Theory
(h-DFT). The most stable isomeric structures of linear Li
nF (n =
1-8) clusters were obtained by using the Becke 3 Lee-Yang-Parr (B3LYP)
functional and the Los Alamos National Laboratory -2 double zeta (Lanl2dz)
basis set. The stabilities of ground state geometric structures of non-linear
Li
nF (n = 2-8) clusters reported in the literature were tested  at h-DFT / B3LYP / Lanl2dz level of theory. The
dipole moment (µ), static mean polarizability (<α>), anisotropic
polarizability (∆α) and molecular first order static total hyperpolarizability
0) values of the obtained global minimum structures of linear and
non-linear clusters
were
investigated with the same method and basis set
. This study may give beneficial
optical knowledge to the experimental researchers working in the design of new
linear and non-linear optical materials or optical applications.

References

  • Linden D. (1995). Handbook of Batteries, 2nd ed., McGraw-Hill, New York.
  • Şentürk, Ş. (2011). A Density Functional Study of LinCl (n=1–7) Clusters. Z. Naturforsch. A, 66, 372-376.
  • Şentürk Ş., Ünal, A., & Kalfa, O.M. (2013). Density functional study of bromine doped lithium clusters. Comput. Theor. Chem., 1023, 46-50.
  • Srivastava, A.K., & Misra, N. (2015). Nonlinear optical behavior of LinF (n=2-5) superalkali clusters. J. Mol. Model., 21, 305.
  • Milovanović, M., Veličković, S., Veljković, F., & Jerosimić, S. (2017). Structure and stability of small lithium-chloride LinClm(0,1+) (n≥m, n= 1–6, m= 1–3) clusters. Phys. Chem. Chem. Phys., 19, 30481-30497.
  • Srivastava, A.K., & Misra, N. (2016). Remarkable NLO responses of hyperalkalized species: the size effect and atomic number dependence. New J. Chem., 40, 5467-5472.
  • Velickovic, S.R., Koteski, V.J., Belosevic Cavor, J.N., Djordjevic, V.R., Cveticanin, J.M., Djustebek, J.B., Veljkovic, M.V., & Neskovic, O.M. (2007). Experimental and theoretical investigation of new hypervalent molecules LinF (n=2-4). Chem. Phys. Lett., 448, 151-155.
  • Ünal, A., & Kotan, B. (2018). A DFT based study of geometries, stabilities and electronic properties of LinF (n=1-8) clusters. Main Group Chem., 17, 267-272.
  • Dustebek, J., Velickovic, S.R., Veljkovic, F.M., & Veljkovic, M.V. (2012). Production of heterogeneous superalkali clusters LinF(n=2-6) by Knudsen cell Mass Spectrometry. Dig. J. Nanomater Bios., 7, 1365-1372.
  • Lanaro, G., & Patey, G.N. (2017). Crystal structures of model lithium halides in bulk phase and in clusters. J. Chem. Phys., 146, 154501.
  • Moreira, N.L., Brito, B.G.A., Rabelo, J.N.T., & Cândido, L. (2016). Quantum Monte Carlo study of the energetics of small hydrogenated and fluoride lithium clusters. J. Comput. Chem., 37, 1534-1536.
  • Milonavić, M.Z., & Jerosimić, S.V. (2014). Theoretical investigation of geometry and stability of small lithium-iodide LinI (n=2-6) clusters. Int. J. Quantum Chem., 114, 192-208.
  • Gutsev, G.L., & Boldryev, A.I. (1981). DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”. Chem. Phys., 56, 277-283.
  • Gutsev, G.L., & Boldryev, A.I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations, Chem. Phys. Lett., 92, 262-266.
  • Rehm, E., Boldryev, A.I ., & Schleyer, P.v.R.(1992). Ab initio study of superalkalis. First ionization potentials and thermodynamic stability. Inorg. Chem. 31, 4834-4842.
  • Li, Y., & Wu, D. (2010). Theoretical study on static first hyperpolarizabilities of hypervalent compounds FnLin+1 (n = 1–3). Gaodeng Xuexiao Huaxue Xuebao, 31, 1811-1814.
  • Frisch, M.J., et al., Gaussian 09 Revision A.1, Gaussian Inc., Wallingford, CT, Gaussian, Inc. 2009.
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648-5652.
  • Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.
  • Kotan, B. (2018). Flor katkılı lityum topaklarının en düşük enerjili yapılarının araştırılması. Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik.
  • Cohen, H.D., & Roothaan, C.C. (1965). Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems. J. Chem. Phys., 43, S34-S39.
  • Pearson, R. G. (1963). Hard and Soft Acids and Bases. J. Am. Chem. Soc., 85, 3533-3539.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Arslan Ünal 0000-0002-5857-7318

Selçuk Güvenir This is me 0000-0001-6322-988X

Publication Date September 30, 2019
Submission Date July 7, 2019
Acceptance Date August 20, 2019
Published in Issue Year 2019

Cite

APA Ünal, A., & Güvenir, S. (2019). Lineer ve Lineer Olmayan Flor Katkılanmış Lityum Topaklarının Optik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 146-152. https://doi.org/10.35193/bseufbd.588173