Research Article
BibTex RIS Cite

Yüksek İç Fazlı Emülsiyon Kalıplama ile Metakrilat Esaslı Küresel Polimerlerin Hazırlanması

Year 2020, , 141 - 151, 28.06.2020
https://doi.org/10.35193/bseufbd.665236

Abstract

Epoksi fonksiyonel gruplara sahip gözenekli polimer küreleri, glisidil metakrilat (GMA) ile esnek gruplara sahip 1,3-bütandiol dimetakrilat (BDDMA) karışımından oluşan monomer bileşimi içinde sulu iç faz çözeltisinin dağıtılması ile elde edilen öncü konsantre emülsiyon kalıpları kullanılarak sentezlendi. Bu amaçla, sulu pullulan çözeltilerinin iç faz olarak kullanılması ile GMA ve BDDMA’nın yüksek iç fazlı emülsiyonları (high internal phase emulsions, HIPEs) hazırlandı. Polimerleştirme adımı, öncü HIPE’lerin sekonder bir sulu ortamda dağıtılması ile elde edilen su/yağ/su (w/o/w) sistemleri içerisinde gerçekleştirildi. Öncü emülsiyon kalıplarının hazırlanmasında farklı konsantrasyonlardaki pullulan çözeltileri iç faz olarak kullanılarak, her bir bağımsız polimer fazın veya ağın kendi özelliklerini koruduğu ve birbirleri ile sinerjik bir etkileşim içinde olduğu yarı-geçişimli bir polimerik ağ yapısı elde edildi. Elde edilen polimer (poliHIPE) kürelerinin morfolojik özellikleri mikroskobik görüntüleme teknikleri ile incelendi. Spesifik yüzey alanları ise elde edilen kürelerin N2 adsorpsiyon/desorpsiyon izotermlerine Brunauer–Emmett–Teller (BET) denklemi uygulanarak hesaplandı. 

Supporting Institution

TÜBİTAK, Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

113Z465, 2013/YL/015

Thanks

Çalışmamıza sağladıkları destekten ötürü TÜBİTAK’a (TÜBİTAK Proje No: 113Z465) ve Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (Proje No: 2013/YL/015)teşekkür ederiz

References

  • Cameron, N. R., & Sherrington, D. C. (1996). High Internal Phase Emulsions (HIPEs) – Structure, Properties and Use in Polymer Preparation. ss. 163-214. Advances in Polymer Science Book Series (Polymer, Volume 126). Springer-Verlag Berlin Heidelberg 214s.
  • Cameron, N. R. (2005). High Internal Phase Emulsion Templating as a Route to Well-defined Porous Polymers. Polymer, 46, 1439–1449.
  • Silverstein, M. S. (2014). Emulsion-Templated Porous Polymers: A Retrospective Perspective. Polymer, 55, 304-320.
  • Silverstein, M. S. (2014). PolyHIPEs: Recent Advances in Emulsion-Templated Porous Polymers. Progress in Polymer Science, 39, 199-234.
  • Silverstein, M. S. (2017). Emulsion-Templated Polymers: Contemporary Contemplations. Polymer, 126, 261-282.
  • Barby, D., & Haq, Z. (1982). Low Density Porous Cross-linked Polymeric Materials and Their Preparation. European Patents 0,060,138 (to Unilever).
  • Pulko, I., & Krajnc, P. (2012). High Internal Phase Emulsion Templating – A Path to Hierarchically Porous Functional Polymers. Macromolecular Rapid Communications. 33, 1731−1746.
  • Zhang, T., Sanguramath, R. A., Israel, S., & Silverstein, M. S. (2019). Emulsion Templating: Porous Polymers and Beyond. Macromolecules, 52, 5445−5479.
  • Mert, H. H., Mert, M. S., & Mert, E. H. (2019). A Statistical Approach for Tailoring the Morphological and Mechanical Properties of Polystyrene PolyHIPEs: Looking through Experimental Design. Materials Research Express, 6 (11) 115306.
  • Oschatz, M., Borchardt, L., Thommes, M., Cychosz, K. A., Senkovska, I., Klein, N., Frind, R., Leistner, M., Presser, V., Gogotsi, Y., & Kaskel, S. (2012). Carbide-Derived Carbon Monoliths with Hierarchical Pore Architectures. Angewandte Chemie International Edition, 51, 7577 –7580.
  • Oschatz, M., Borchardt, L., Senkovska, I., Klein, N., Leistner, M., & Kaskel, S. (2013). Carbon dioxide Activated Carbide-Derived Carbon Monoliths as High Performance Adsorbents. Carbon, 56, 139-145.
  • Deshmukh, A. B., Nalawade, A. C., Karbhal, I., Qureshi, M. S., & Shelke, M. V. (2018). Electrochemical Capacitive Energy Storage in PolyHIPE Derived Nitrogen Enriched Hierarchical Porous Carbon Nanosheets. Carbon, 128, 287-295.
  • Wakeman, R. J., Bhumgara, Z. G., & Akay, G. (1998). Ion Exchange Modules Formed from Polyhipe Foam Precursors. Chemical Engineering Journal, 70, 133-141.
  • Alikhani, M., & Moghbeli, M. R. (2014). Ion-Exchange PolyHIPE Type Membrane for Removing Nitrate Ions: Preparation, Characterization, Kinetics and Adsorption Studies. Chemical Engineering Journal, 239, 93–104.
  • Barlık, N., Keskinler, B., Kocakerim, M. M., & Akay, G. (2015). Surface Modification of Monolithic PolyHIPE Polymers for Anionic Functionality and Their Ion Exchange Behavior. Journal of Applied Polymer Science, 132, 42286-42293.
  • Mert, E. H., Kaya, M. A., & Yıldırım, H. (2012). Preparation and Characterization of Polyester–Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Design Monomers Polymers, 15, 113-126.
  • Mert, E. H., & Yıldırım, H. (2014). Porous Functional Poly(unsaturated polyester-co-glycidyl methacrylate-co-divinylbenzene) PolyHIPE Beads through w/o/w Multiple Emulsions: Preparation, Characterization and Application. e-Polymers, 14(1), 65-73.
  • San, N., Mert, E. H., Kaya, D., & Çira, F. (2016). Adsorption Characteristics, Isotherm and Kinetics of a Novel PolyHIPE/Pullulan Composite For Removing Congo Red Dye. Fresenius Environmental Bulletin, 25 (9), 3635-3645.
  • Yüce, E., Mert, E. H., Şen, S., Saygı, S., & San, N. (2017). Properties and Applications of Nanoclay Reinforced Open-Porous Polymer Composites. Journal of Applied Polymer Science, 134, 45522-45532.
  • Kovačič , S., Mazaj, M., Ješelnik, M., Pahovnik, D., Žagar, E., Slugovc, C., & Logar, N. Z. (2015). Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 36, 1605−1611.
  • Koler, A., Paljevac, M., Cmager, N., Iskra, J., Kolar, M., & Krajnc, P. (2017). Poly(4-vinylpyridine) PolyHIPEs as Catalysts for Cycloaddition Click Reaction. Polymer, 126, 402-407.
  • Yuan, W., Chen, X., Xu, Y., Yan, C., Liu, Y., Lian, W., Zhou Y., & Li, Z. (2018). Preparation and Recyclable Catalysis Performance of Functional Macroporous PolyHIPE Immobilized with Gold Nanoparticles on its surface, Royal Society of Chemistry Advances, 8, 5912-5919.
  • Yüce, E., Mert, E. H., Krajnc, P., Parın, F. N., San, N., Kaya, D., & Yıldırım, H. (2017). Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering, 302 (10), 1700091-1700099.
  • Ruan, G., Wu, Z., Huang, Y., Wei, M., Su, R., & Du, F. (2016). An Easily Regenerable Enzyme Reactor Prepared from Polymerized High Internal Phase Emulsions. Biochemical and Biophysical Research Communications, 473, 54-60.
  • Kimmins S. D., Wyman, P., & Cameron, N. R. (2014). Amine-functionalization of Glycidyl Methacrylate-Containing Emulsion-Templated Porous Polymers and Immobilization of Proteinase K for Biocatalysis. Polymer, 55, 416-425.
  • Pulko, I., Smrekar, V., Podgornik, A., & Krajnc, P. (2011). Emulsion Templated Open Porous Membranes for Protein Purification. Journal of Chromatography A, 1218, 2396–2401.
  • Barbetta, A., Dentini, M., Zannoni, E. M., & De Stefano, M. E. (2005). Tailoring the Porosity and Morphology of Gelatin-Methacrylate PolyHIPE Scaffolds for Tissue Engineering Applications. Langmuir, 21(26), 12333–12341.
  • Christenson, E. M., Soofi, W., Holm, J. L., Cameron, N. R., & Mikos, A. G. (2007). Biodegradable Fumarate-Based PolyHIPEs as Tissue Engineering Scaffolds. Biomacromolecules, 8 (12), 3806–3814.
  • Mert, H. H. (2020). PolyHIPE Composite Based-form Stable Phase Change Material for Thermal Energy Storage. International Journal of Energy Research, 1-12.
  • Stefanec, D., & Krajnc, P. (2005). 4-Vinylbenzyl Chloride Based Porous Spherical Polymer Supports Derived from Water-in-Oil-in-Water Emulsions. Reactive and Functional Polymers, 65 (1– 2), 37– 45.
  • Yüce, E., Parın, F. N., Krajncc, P., Mert, H. H., & Mert, E. H. (2018). Influence of Titania on the Morphological and Mechanical Properties of 1,3-Butanediol Dimethacrylate based PolyHIPE Composites. Reactive and Functional Polymers, 130, 8–15.
  • Taylor, K.M.L., Pribyl, P., & Pribyl, J. G. (2019). PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extraction and Ion Exchange, 37 (1), 1 –26.
  • Fernandes, S. C. M., Sadocco, P., Causio, J., Silvestre, A. J. D., Mondragon, I., & Freire, C. S. R. (2014). Antimicrobial Pullulan Derivative Prepared by Grafting with 3-Aminopropyltrimethoxysilane: Characterization and Ability to Form Transparent Films. Food Hydrocolloids, 35, 247-252.
  • Çira F., & Mert, E. H. (2015). PolyHIPE/Pullulan Composites Derived from Glycidyl Methacrylate and 1,3-Butanediol Dimethacrylate-Based High Internal Phase Emulsions. Polymer Engineering and Science, 55, 2636-2642.

Preparation of Methacrylate Based Spherical Polymers via High Internal Phase Emulsion Templating

Year 2020, , 141 - 151, 28.06.2020
https://doi.org/10.35193/bseufbd.665236

Abstract

Epoxy functional spherical polymer beads were synthesized by using precursor concentrated emulsions templates obtained by dispersing aqueous internal phase solution in the monomer mixture composed of glycidyl methacrylate (GMA) and 1,3-butandiol dimethacrylate having flexible groups. For this purpose, high internal phase emulsions (HIPEs) of GMA and BDDMA were obtained with the use of aqueous pullulan solutions as the internal phase. Polymerization step was achieved within the water/oil/water (w/o/w) systems that were prepared by dispersing precursor HIPEs in a secondary aqueous medium. On the other hand, by using aqueous pullulan solutions during the preparation of precursor emulsion templates, a semi-interpenetrating polymer network structure in which each individual phase or network retains their individual properties and causes synergistic interaction, was obtained. The morphological properties of the resulting polymer (polyHIPE) beads were investigated by using microscopic imaging techniques. The specific surface areas were calculated by applying Brunauer–Emmett–Teller (BET) equation to the N2 adsorption/desertion isotherms of the resulting beads.

Project Number

113Z465, 2013/YL/015

References

  • Cameron, N. R., & Sherrington, D. C. (1996). High Internal Phase Emulsions (HIPEs) – Structure, Properties and Use in Polymer Preparation. ss. 163-214. Advances in Polymer Science Book Series (Polymer, Volume 126). Springer-Verlag Berlin Heidelberg 214s.
  • Cameron, N. R. (2005). High Internal Phase Emulsion Templating as a Route to Well-defined Porous Polymers. Polymer, 46, 1439–1449.
  • Silverstein, M. S. (2014). Emulsion-Templated Porous Polymers: A Retrospective Perspective. Polymer, 55, 304-320.
  • Silverstein, M. S. (2014). PolyHIPEs: Recent Advances in Emulsion-Templated Porous Polymers. Progress in Polymer Science, 39, 199-234.
  • Silverstein, M. S. (2017). Emulsion-Templated Polymers: Contemporary Contemplations. Polymer, 126, 261-282.
  • Barby, D., & Haq, Z. (1982). Low Density Porous Cross-linked Polymeric Materials and Their Preparation. European Patents 0,060,138 (to Unilever).
  • Pulko, I., & Krajnc, P. (2012). High Internal Phase Emulsion Templating – A Path to Hierarchically Porous Functional Polymers. Macromolecular Rapid Communications. 33, 1731−1746.
  • Zhang, T., Sanguramath, R. A., Israel, S., & Silverstein, M. S. (2019). Emulsion Templating: Porous Polymers and Beyond. Macromolecules, 52, 5445−5479.
  • Mert, H. H., Mert, M. S., & Mert, E. H. (2019). A Statistical Approach for Tailoring the Morphological and Mechanical Properties of Polystyrene PolyHIPEs: Looking through Experimental Design. Materials Research Express, 6 (11) 115306.
  • Oschatz, M., Borchardt, L., Thommes, M., Cychosz, K. A., Senkovska, I., Klein, N., Frind, R., Leistner, M., Presser, V., Gogotsi, Y., & Kaskel, S. (2012). Carbide-Derived Carbon Monoliths with Hierarchical Pore Architectures. Angewandte Chemie International Edition, 51, 7577 –7580.
  • Oschatz, M., Borchardt, L., Senkovska, I., Klein, N., Leistner, M., & Kaskel, S. (2013). Carbon dioxide Activated Carbide-Derived Carbon Monoliths as High Performance Adsorbents. Carbon, 56, 139-145.
  • Deshmukh, A. B., Nalawade, A. C., Karbhal, I., Qureshi, M. S., & Shelke, M. V. (2018). Electrochemical Capacitive Energy Storage in PolyHIPE Derived Nitrogen Enriched Hierarchical Porous Carbon Nanosheets. Carbon, 128, 287-295.
  • Wakeman, R. J., Bhumgara, Z. G., & Akay, G. (1998). Ion Exchange Modules Formed from Polyhipe Foam Precursors. Chemical Engineering Journal, 70, 133-141.
  • Alikhani, M., & Moghbeli, M. R. (2014). Ion-Exchange PolyHIPE Type Membrane for Removing Nitrate Ions: Preparation, Characterization, Kinetics and Adsorption Studies. Chemical Engineering Journal, 239, 93–104.
  • Barlık, N., Keskinler, B., Kocakerim, M. M., & Akay, G. (2015). Surface Modification of Monolithic PolyHIPE Polymers for Anionic Functionality and Their Ion Exchange Behavior. Journal of Applied Polymer Science, 132, 42286-42293.
  • Mert, E. H., Kaya, M. A., & Yıldırım, H. (2012). Preparation and Characterization of Polyester–Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Design Monomers Polymers, 15, 113-126.
  • Mert, E. H., & Yıldırım, H. (2014). Porous Functional Poly(unsaturated polyester-co-glycidyl methacrylate-co-divinylbenzene) PolyHIPE Beads through w/o/w Multiple Emulsions: Preparation, Characterization and Application. e-Polymers, 14(1), 65-73.
  • San, N., Mert, E. H., Kaya, D., & Çira, F. (2016). Adsorption Characteristics, Isotherm and Kinetics of a Novel PolyHIPE/Pullulan Composite For Removing Congo Red Dye. Fresenius Environmental Bulletin, 25 (9), 3635-3645.
  • Yüce, E., Mert, E. H., Şen, S., Saygı, S., & San, N. (2017). Properties and Applications of Nanoclay Reinforced Open-Porous Polymer Composites. Journal of Applied Polymer Science, 134, 45522-45532.
  • Kovačič , S., Mazaj, M., Ješelnik, M., Pahovnik, D., Žagar, E., Slugovc, C., & Logar, N. Z. (2015). Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 36, 1605−1611.
  • Koler, A., Paljevac, M., Cmager, N., Iskra, J., Kolar, M., & Krajnc, P. (2017). Poly(4-vinylpyridine) PolyHIPEs as Catalysts for Cycloaddition Click Reaction. Polymer, 126, 402-407.
  • Yuan, W., Chen, X., Xu, Y., Yan, C., Liu, Y., Lian, W., Zhou Y., & Li, Z. (2018). Preparation and Recyclable Catalysis Performance of Functional Macroporous PolyHIPE Immobilized with Gold Nanoparticles on its surface, Royal Society of Chemistry Advances, 8, 5912-5919.
  • Yüce, E., Mert, E. H., Krajnc, P., Parın, F. N., San, N., Kaya, D., & Yıldırım, H. (2017). Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering, 302 (10), 1700091-1700099.
  • Ruan, G., Wu, Z., Huang, Y., Wei, M., Su, R., & Du, F. (2016). An Easily Regenerable Enzyme Reactor Prepared from Polymerized High Internal Phase Emulsions. Biochemical and Biophysical Research Communications, 473, 54-60.
  • Kimmins S. D., Wyman, P., & Cameron, N. R. (2014). Amine-functionalization of Glycidyl Methacrylate-Containing Emulsion-Templated Porous Polymers and Immobilization of Proteinase K for Biocatalysis. Polymer, 55, 416-425.
  • Pulko, I., Smrekar, V., Podgornik, A., & Krajnc, P. (2011). Emulsion Templated Open Porous Membranes for Protein Purification. Journal of Chromatography A, 1218, 2396–2401.
  • Barbetta, A., Dentini, M., Zannoni, E. M., & De Stefano, M. E. (2005). Tailoring the Porosity and Morphology of Gelatin-Methacrylate PolyHIPE Scaffolds for Tissue Engineering Applications. Langmuir, 21(26), 12333–12341.
  • Christenson, E. M., Soofi, W., Holm, J. L., Cameron, N. R., & Mikos, A. G. (2007). Biodegradable Fumarate-Based PolyHIPEs as Tissue Engineering Scaffolds. Biomacromolecules, 8 (12), 3806–3814.
  • Mert, H. H. (2020). PolyHIPE Composite Based-form Stable Phase Change Material for Thermal Energy Storage. International Journal of Energy Research, 1-12.
  • Stefanec, D., & Krajnc, P. (2005). 4-Vinylbenzyl Chloride Based Porous Spherical Polymer Supports Derived from Water-in-Oil-in-Water Emulsions. Reactive and Functional Polymers, 65 (1– 2), 37– 45.
  • Yüce, E., Parın, F. N., Krajncc, P., Mert, H. H., & Mert, E. H. (2018). Influence of Titania on the Morphological and Mechanical Properties of 1,3-Butanediol Dimethacrylate based PolyHIPE Composites. Reactive and Functional Polymers, 130, 8–15.
  • Taylor, K.M.L., Pribyl, P., & Pribyl, J. G. (2019). PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extraction and Ion Exchange, 37 (1), 1 –26.
  • Fernandes, S. C. M., Sadocco, P., Causio, J., Silvestre, A. J. D., Mondragon, I., & Freire, C. S. R. (2014). Antimicrobial Pullulan Derivative Prepared by Grafting with 3-Aminopropyltrimethoxysilane: Characterization and Ability to Form Transparent Films. Food Hydrocolloids, 35, 247-252.
  • Çira F., & Mert, E. H. (2015). PolyHIPE/Pullulan Composites Derived from Glycidyl Methacrylate and 1,3-Butanediol Dimethacrylate-Based High Internal Phase Emulsions. Polymer Engineering and Science, 55, 2636-2642.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burcu Kekevi 0000-0002-2364-1957

Emine Hilal Mert 0000-0003-4267-7469

Funda Çira 0000-0001-7694-2051

Project Number 113Z465, 2013/YL/015
Publication Date June 28, 2020
Submission Date January 8, 2020
Acceptance Date May 7, 2020
Published in Issue Year 2020

Cite

APA Kekevi, B., Mert, E. H., & Çira, F. (2020). Yüksek İç Fazlı Emülsiyon Kalıplama ile Metakrilat Esaslı Küresel Polimerlerin Hazırlanması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 141-151. https://doi.org/10.35193/bseufbd.665236