Research Article
BibTex RIS Cite

Master-eğriler kinetik yönteminin izotermal olmayan selüloz pirolizine uygulanması ve piroliz işleminin termodinamik analizi

Year 2020, , 313 - 328, 23.03.2020
https://doi.org/10.35193/bseufbd.669583

Abstract

Biyorafineriler için piroliz gibi termokimyasal dönüşüm yöntemlerinin kinetik olarak modellenmesi en zorlu konulardan biridir. Temelde biyokütle pirolizini selüloz ile birlikte lignin ve hemiselüloz özelliklerinin etkilediği bilinmektedir. Ancak çok fazlı karmaşık piroliz tepkimelerine giren bu biyopolimerlerin termal davranışları hakkında halen literatürde sınırlı bilgi bulunmaktadır. Bu nedenle, bu çalışmada selülozun piroliz kinetiği ve termodinamiği incelenmiştir. Pirolize ait kinetik parametreler master eğriler ve Friedman yönteminin birleştirilmesi ile hesaplanmıştır. Selülozun aktif pirolizinin 263 ile 455 °C arasında gerçekleştiği saptanmıştır. Uygulanan Friedman yöntemi deneysel veriler ile çok iyi uyum sağlamış, termokimyasal dönüşüm işleminin aktivasyon enerjileri 150.8 ile 190.2 kJ/mol arasında bulunmuş ve ortalama aktivasyon enerjisinin 164.3 kJ/mol olduğu hesaplanmıştır. Katı hal bozunma süreçlerinde kullanılan kinetik yöntemlerin karşılaştırılması ile selüloz piroliz mekanizmasının düşük dönüşümlerde (0<α<0.5) difüzyon kontrollü bir bozunma işlemi (D3) ile sürdüğü ve daha yüksek dönüşümlerde tepkime derecesine bağlı olduğu saptanmıştır.

References

  • [1] Guedes, R. E., A. S. Luna and A. R. Torres (2018). Operating parameters for bio-oil production in biomass pyrolysis: a review. Journal of analytical and applied pyrolysis, 129, 134-149.
  • [2] Fu, X., Q. Li and C. Hu (2019). Identification and structural characterization of oligomers formed from the pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 144, 104696.
  • [3] Rony, A. H., D. Mosiman, Z. Sun, D. Qin, Y. Zheng, J. H. Boman IV and M. Fan (2018). A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 132, 19-32.
  • [4] Pütün, A. E., B. B. Uzun, E. Apaydin and E. Pütün (2005). Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87(1), 25-32.
  • [5] Kılıç, M., E. Pütün and A. E. Pütün (2014). Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology. Journal of analytical and applied pyrolysis, 110, 163-171.
  • [6] Goyal, H., D. Seal and R. Saxena (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews, 12(2), 504-517.
  • [7] Correa, C. R., T. Hehr, A. Voglhuber-Slavinsky, Y. Rauscher and A. Kruse (2019). Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. Journal of Analytical and Applied Pyrolysis, 140, 137-147.
  • [8] Apaydın-Varol, E. and A. E. Pütün (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis, 98, 29-36.
  • [9] Patwardhan, P. R., J. A. Satrio, R. C. Brown and B. H. Shanks (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource technology, 101(12), 4646-4655
  • [10] Maduskar, S., V. Maliekkal, M. Neurock and P. J. Dauenhauer (2018). On the yield of levoglucosan from cellulose pyrolysis. ACS Sustainable Chemistry & Engineering, 6(5), 7017-7025.
  • [11] Trendewicz, A., R. Evans, A. Dutta, R. Sykes, D. Carpenter and R. Braun (2015). Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass and bioenergy, 74, 15-25.
  • [12] Antal, M. J. J. and G. Varhegyi (1995). Cellulose pyrolysis kinetics: the current state of knowledge. Industrial & Engineering Chemistry Research 34(3), 703-717.
  • [13] Zheng, M., Z. Wang, X. Li, X. Qiao, W. Song and L. Guo (2016). Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel, 177: 130-141.
  • [14] Li, T., F. Song, J. Zhang, S. Liu, B. Xing and Y. Bai (2020). Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models. Science of The Total Environment, 698: 134237.
  • [15] Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library.
  • [16] Janković, B., N. Manić, I. Radović, M. Janković and M. Rajačić (2019). Model-free and model-based kinetics of the combustion process of low rank coals with high ash contents using TGA-DTG-DTA-MS and FTIR techniques. Thermochimica Acta, 679, 178337.
  • [17] Criado, J. M. (1978). Kinetic analysis of DTG data from master curves. Thermochimica Acta 24(1), 186-189.
  • [18] Mallick, D., M. K. Poddar, P. Mahanta and V. S. Moholkar (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource technology, 261, 294-305.
  • [19] Yu, J., N. Paterson, J. Blamey and M. Millan (2017). Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191,140-149.
  • [20] Chen, X., Q. Che, S. Li, Z. Liu, H. Yang, Y. Chen, X. Wang, J. Shao and H. Chen (2019). Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, 196, 106180.
  • [21] Shen, D. and S. Gu (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource technology, 100(24), 6496-6504.
  • [22] Collard, F.-X. and J. Blin (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608.
  • [23] Oh, S. Y., D. I. Yoo, Y. Shin and G. Seo (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate research, 340(3), 417-428.
  • [24] Li, J., L.-P. Zhang, F. Peng, J. Bian, T.-Q. Yuan, F. Xu and R.-C. Sun (2009). Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules, 14(9), 3551-3566.
  • [25] Abderrahim, B., E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam and O. Krim (2015). Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World Journal of Environmental Engineering, 3(4), 95.
  • [26] Mkhize, N., B. Danon, P. van der Gryp and J. Görgens (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design. 152, 363-371.
  • [27] Chin, B. L. F., S. Yusup, A. Al Shoaibi, P. Kannan, C. Srinivasakannan and S. A. Sulaiman (2014). "Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene." Energy conversion and management 87: 746-753.
  • [28] Wang, B., F. Xu, P. Zong, J. Zhang, Y. Tian and Y. Qiao (2019). "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS." Renewable energy 132: 486-496.
  • [29] Özsin, G. and A. E. Pütün (2019). "TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process." Energy conversion and management 182: 143-153.
  • [30] Yan, J., H. Jiao, Z. Li, Z. Lei, Z. Wang, S. Ren, H. Shui, S. Kang, H. Yan and C. Pan (2019). "Kinetic analysis and modeling of coal pyrolysis with model-free methods." Fuel 241: 382-391.
  • [31] Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli (2011). "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data." Thermochimica acta 520(1-2): 1-19.
  • [32] Sobek, S. and S. Werle (2020). Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel, 261, 116459.
  • [33] Singh, S., J. P. Chakraborty and M. K. Mondal (2020). Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel, 259, 116263.
  • [34] Chong, C. T., G. R. Mong, J.-H. Ng, W. W. F. Chong, F. N. Ani, S. S. Lam and H. C. Ong (2019). Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management, 180, 1260-1267.
  • [35] Shahid, A., Ishfaq, M., Ahmad, M. S., Malik, S., Farooq, M., Hui, Z., Batawi, A. H., Shafi, M. E., Aloqbi, A. A., Gull, M., Mehmood, M. A. (2019) Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery, Bioresource Technology, 289, 121701.
  • [36] Lahijani, P., M. Mohammadi and A. R. Mohamed (2019). Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes. Renewable Energy, 142, 147-157.

Application of master-plots kinetic method to non-isothermal cellulose pyrolysis and thermodynamic analysis of the pyrolysis process

Year 2020, , 313 - 328, 23.03.2020
https://doi.org/10.35193/bseufbd.669583

Abstract

Kinetic modeling of thermochemical conversion methods such as pyrolysis is one of the most challenging issues for bio-refineries. It is known that cellulose together with hemicellulose and lignin mainly affect the characteristics of biomass pyrolysis. However, there is still limited knowledge about the thermal behaviors of biopolymers that go into complex multi-phase pyrolysis reactions in the literature. Therefore, cellulose pyrolysis kinetics and thermodynamics were investigated in this study. Kinetic parameters of the pyrolysis process were calculated by a combined method of master-plots and Friedman method. Active pyrolysis of cellulose is found to occur between 263 and 455 °C. Applied Friedman method was perfectly fitted with the experimental data and activation energy of the thermochemical conversion process was found between 150.8 and 190.2 kJ/mol while the mean activation energy was calculated as 164.3 kJ/mol. The comparison of kinetic models used of solid-state thermal decomposition processes indicated that the cellulose pyrolysis mechanism is a diffusion-controlled (D3) degradation process at lower conversions (0<α<0.5) and the process can be explained by reaction-based mechanisms at higher conversion degrees.

References

  • [1] Guedes, R. E., A. S. Luna and A. R. Torres (2018). Operating parameters for bio-oil production in biomass pyrolysis: a review. Journal of analytical and applied pyrolysis, 129, 134-149.
  • [2] Fu, X., Q. Li and C. Hu (2019). Identification and structural characterization of oligomers formed from the pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 144, 104696.
  • [3] Rony, A. H., D. Mosiman, Z. Sun, D. Qin, Y. Zheng, J. H. Boman IV and M. Fan (2018). A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 132, 19-32.
  • [4] Pütün, A. E., B. B. Uzun, E. Apaydin and E. Pütün (2005). Bio-oil from olive oil industry wastes: Pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87(1), 25-32.
  • [5] Kılıç, M., E. Pütün and A. E. Pütün (2014). Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology. Journal of analytical and applied pyrolysis, 110, 163-171.
  • [6] Goyal, H., D. Seal and R. Saxena (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews, 12(2), 504-517.
  • [7] Correa, C. R., T. Hehr, A. Voglhuber-Slavinsky, Y. Rauscher and A. Kruse (2019). Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties. Journal of Analytical and Applied Pyrolysis, 140, 137-147.
  • [8] Apaydın-Varol, E. and A. E. Pütün (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis, 98, 29-36.
  • [9] Patwardhan, P. R., J. A. Satrio, R. C. Brown and B. H. Shanks (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource technology, 101(12), 4646-4655
  • [10] Maduskar, S., V. Maliekkal, M. Neurock and P. J. Dauenhauer (2018). On the yield of levoglucosan from cellulose pyrolysis. ACS Sustainable Chemistry & Engineering, 6(5), 7017-7025.
  • [11] Trendewicz, A., R. Evans, A. Dutta, R. Sykes, D. Carpenter and R. Braun (2015). Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass and bioenergy, 74, 15-25.
  • [12] Antal, M. J. J. and G. Varhegyi (1995). Cellulose pyrolysis kinetics: the current state of knowledge. Industrial & Engineering Chemistry Research 34(3), 703-717.
  • [13] Zheng, M., Z. Wang, X. Li, X. Qiao, W. Song and L. Guo (2016). Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics. Fuel, 177: 130-141.
  • [14] Li, T., F. Song, J. Zhang, S. Liu, B. Xing and Y. Bai (2020). Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models. Science of The Total Environment, 698: 134237.
  • [15] Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library.
  • [16] Janković, B., N. Manić, I. Radović, M. Janković and M. Rajačić (2019). Model-free and model-based kinetics of the combustion process of low rank coals with high ash contents using TGA-DTG-DTA-MS and FTIR techniques. Thermochimica Acta, 679, 178337.
  • [17] Criado, J. M. (1978). Kinetic analysis of DTG data from master curves. Thermochimica Acta 24(1), 186-189.
  • [18] Mallick, D., M. K. Poddar, P. Mahanta and V. S. Moholkar (2018). Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource technology, 261, 294-305.
  • [19] Yu, J., N. Paterson, J. Blamey and M. Millan (2017). Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel, 191,140-149.
  • [20] Chen, X., Q. Che, S. Li, Z. Liu, H. Yang, Y. Chen, X. Wang, J. Shao and H. Chen (2019). Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, 196, 106180.
  • [21] Shen, D. and S. Gu (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource technology, 100(24), 6496-6504.
  • [22] Collard, F.-X. and J. Blin (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608.
  • [23] Oh, S. Y., D. I. Yoo, Y. Shin and G. Seo (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate research, 340(3), 417-428.
  • [24] Li, J., L.-P. Zhang, F. Peng, J. Bian, T.-Q. Yuan, F. Xu and R.-C. Sun (2009). Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules, 14(9), 3551-3566.
  • [25] Abderrahim, B., E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam and O. Krim (2015). Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World Journal of Environmental Engineering, 3(4), 95.
  • [26] Mkhize, N., B. Danon, P. van der Gryp and J. Görgens (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design. 152, 363-371.
  • [27] Chin, B. L. F., S. Yusup, A. Al Shoaibi, P. Kannan, C. Srinivasakannan and S. A. Sulaiman (2014). "Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene." Energy conversion and management 87: 746-753.
  • [28] Wang, B., F. Xu, P. Zong, J. Zhang, Y. Tian and Y. Qiao (2019). "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS." Renewable energy 132: 486-496.
  • [29] Özsin, G. and A. E. Pütün (2019). "TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process." Energy conversion and management 182: 143-153.
  • [30] Yan, J., H. Jiao, Z. Li, Z. Lei, Z. Wang, S. Ren, H. Shui, S. Kang, H. Yan and C. Pan (2019). "Kinetic analysis and modeling of coal pyrolysis with model-free methods." Fuel 241: 382-391.
  • [31] Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu and N. Sbirrazzuoli (2011). "ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data." Thermochimica acta 520(1-2): 1-19.
  • [32] Sobek, S. and S. Werle (2020). Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel, 261, 116459.
  • [33] Singh, S., J. P. Chakraborty and M. K. Mondal (2020). Intrinsic kinetics, thermodynamic parameters and reaction mechanism of non-isothermal degradation of torrefied Acacia nilotica using isoconversional methods. Fuel, 259, 116263.
  • [34] Chong, C. T., G. R. Mong, J.-H. Ng, W. W. F. Chong, F. N. Ani, S. S. Lam and H. C. Ong (2019). Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management, 180, 1260-1267.
  • [35] Shahid, A., Ishfaq, M., Ahmad, M. S., Malik, S., Farooq, M., Hui, Z., Batawi, A. H., Shafi, M. E., Aloqbi, A. A., Gull, M., Mehmood, M. A. (2019) Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery, Bioresource Technology, 289, 121701.
  • [36] Lahijani, P., M. Mohammadi and A. R. Mohamed (2019). Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes. Renewable Energy, 142, 147-157.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gamzenur Özsin 0000-0001-5091-5485

Publication Date March 23, 2020
Submission Date January 3, 2020
Acceptance Date March 5, 2020
Published in Issue Year 2020

Cite

APA Özsin, G. (2020). Application of master-plots kinetic method to non-isothermal cellulose pyrolysis and thermodynamic analysis of the pyrolysis process. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(100. Yıl Özel Sayı), 313-328. https://doi.org/10.35193/bseufbd.669583