Research Article
BibTex RIS Cite

Production of Reduced Graphene Oxide/Zinc Oxide Composites and Super Capacitor Applications

Year 2020, , 201 - 210, 28.06.2020
https://doi.org/10.35193/bseufbd.682266

Abstract

In this work, reduced graphene oxide/zinc oxide (RGO/ZnO) composite materials were synthesized by hydrothermal method. Synthesized RGO/ZnO composites were used in electrode for super capacitor applications. RGO/ZnO composite materials are produced using different zinc sources (zinc nitrate, zinc chloride and zinc acetate) and effect of different zinc salts on capasitans value of RGO/ZnO electrodes was investigated. Characterization of RGO/ZnO composites was performed with XRD (X-ray diffraction) and SEM (scanning electron microscopy). Electrochemical properties of produced RGO/ZnO electrodes were analyzed in 6M KOH solution by cyclic voltammetry, electrochemical impedance and galvanostatic charge-discharge. Experimental results showed that RGO/ZnO composite electrode obtained by zinc nitrate salt reached maximum specific capacitance (52,71 F/g).

References

  • Winter, M. & Brodd, R.J. (2004). What are batteries, fuel cells and super capacitors. Chemical Reviews. 104, 4245-4269.
  • Çalıker, A. & Özdemir E. (2013). Modern Enerji Depolama Sistemleri ve Kullanm Alanları. 5. Enerji Verimliliği ve Kalitesi Sempozyumu. Kartepe, Kocaeli: 175-179.
  • Burke A. (2000). Ultracapacitors: Why, How and where is the techology. Journal of Power Sources. 91(1), 37-50.
  • Miller, J.R. & Simon, P. (2008). Electrochemical capacitors for energy management. Science. 321, 651-652.
  • Zhang, L.L. & Zhao, X.S. (2009). Carbon-based materials as super capacitor elektrodes. Chemical Society Reviews. 38, 2520-2531.
  • Hou, J., Shao, Y., Ellis, M.W., Moore, R.B. & Yi, B. (2011). Graphene-based electrochemical energy conversion and storage: fuel cells, super capacitors and lithium-ion batteries. 13,15384-15402.
  • Wu, Z.S, Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F. & Cheng, H.M. (2010). Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials.19, 772-777.
  • Fang, L., Zhang, B., Li, W., Huang, K. & Zihang, Q. (2014). Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochimica Acta. 148, 164-169.
  • Jayachandiran, J., Yesuraj, J., Arivanandhan, M., Raja, A., Suthanthiraraj, A.S., Jayavel, R. & Nedumaran, D. (2018). Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. Journal of Inorganic and Organometallic Polymers and Materials. 28 (5), 2046-2055.
  • Mohan, R., Kıran, K.A.B.V., Naman, A. & Subha, J. (2014). Studies on electrochemical properties of ZnO/rGO nanocomposites as electrode materials for supercapacitors. Fullerenes, Nanotubes and Carbon Nanostructures. 23, 691-694.
  • Hummers, M.S. & Offeman, R.E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society. 80(6), 1339.
  • Xu, C., Wang, X. & Zhu, J. (2008). Graphene-metal particle nanocomposites. Journal of Physical Chemistry.112, 19841-19845.
  • Cai, D. & Song, M. (2007). Preparation of fully exfoliated graphite oxide nano platelets in organic solvents. Journal of Materials Chemistry. 17(35), 3678-3680.
  • Lu, C.H. & Yeh, C.H. (2000). Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceramics International. 26, 351-357.
  • Palanikumar, L., Ramasamy, S., Hariharan, G. & Balachandran, C. (2013). Influence of particle size of nano zinc oxide on the controlled delivery of amoxicillin. Applications Nano Science. 3, 441-451.
  • Gusattia, M., Barrosoa, G. S., de Camposb, C.E.M., de Souzaa, D. A. R., Rosarioa, J., de A. Do, Limaa, R.B., Milliolia,C.C.,Silvaa, L.A.,Riellaa, H. G. & Kuhnena, N.C. (2011). Effect of different precursors in the chemical synthesis of ZnO nano crystals. Materials Research. 14(2), 264-267.
  • Alver, Ü. & Tanrıverdi, A. (2016). Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Applied Surface Science. 378, 368-374.
  • Baruah, S. & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science Technology of Advanced Materials. 10, 013001-013019.
  • Yogamalar, N.R. & Chandra Bose, A.C. (2011). Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor. Journal of Solid State Chemistry. 184, 12-20.
  • Peng, Y. Ji, J. & Chen, D. (2015). Ultrasound assisted synthesis of ZnO/reduced graphene oxidecomposites with enhanced photocatalytic activity andanti-photocorrosion. Applied Surface Science. 356, 762-768.
  • Wang, H.L., Robinson, J.T., Diankov, G. & Dai, .J. (2010). Nanocrystal growth on graphene with various degrees of oxidation. Journal of American Chemical Society. 132, 3270-3271.
  • Zhang, J., Kong, L.B., Cai, J.J., Luo, Y.C. & Kang, L. (2010). Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electrochemical capacitors. Journal of Solid State Electrochemistry. 14, 2065-2075.

İndirgenmiş Grafen Oksit/Çinko Oksit Kompozitlerin Üretimi ve Süper Kapasitör Uygulamaları

Year 2020, , 201 - 210, 28.06.2020
https://doi.org/10.35193/bseufbd.682266

Abstract

Bu çalışmada, indirgenmiş grafen oksit/çinko oksit (RGO/ZnO) kompozit malzemeleri hidrotermal yöntem kullanılarak sentezlenmiştir. Sentezlenen RGO/ZnO kompozitleri, süper kapasitör uygulamaları için elektrot yapımında kullanılmıştır. RGO/ZnO kompozit malzemeler farklı çinko kaynakları (çinko nitrat, çinko klorür ve çinko asesat) kullanılarak üretilip, farklı çinko tuzların RGO/ZnO elektrotların kapasitans değerleri üzerindeki etkisi araştırılmıştır. RGO/ZnO kompozitlerin karakterizasyonu XRD (X-ışını kırınımı) ve SEM (taramalı elektron mikroskopisi) ile gerçekleştirilmiştir. Üretilen RGO/ZnO elektrotların elektrokimyasal özellikleri döngüsel voltametri, elektrokimyasal empedans ve galvanostatik şarj-deşarj testleriyle 6M KOH çözeltisi içinde analiz edilmiştir. Yapılan analizler sonucunda; çinko nitrat tuzu kullanılarak elde edilen RGO/ZnO kompozit malzemesi ile oluşturulan elektrodun maksimum spesifik kapasitans değerine (52,71 F/g) ulaştığı belirlenmiştir.

References

  • Winter, M. & Brodd, R.J. (2004). What are batteries, fuel cells and super capacitors. Chemical Reviews. 104, 4245-4269.
  • Çalıker, A. & Özdemir E. (2013). Modern Enerji Depolama Sistemleri ve Kullanm Alanları. 5. Enerji Verimliliği ve Kalitesi Sempozyumu. Kartepe, Kocaeli: 175-179.
  • Burke A. (2000). Ultracapacitors: Why, How and where is the techology. Journal of Power Sources. 91(1), 37-50.
  • Miller, J.R. & Simon, P. (2008). Electrochemical capacitors for energy management. Science. 321, 651-652.
  • Zhang, L.L. & Zhao, X.S. (2009). Carbon-based materials as super capacitor elektrodes. Chemical Society Reviews. 38, 2520-2531.
  • Hou, J., Shao, Y., Ellis, M.W., Moore, R.B. & Yi, B. (2011). Graphene-based electrochemical energy conversion and storage: fuel cells, super capacitors and lithium-ion batteries. 13,15384-15402.
  • Wu, Z.S, Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F. & Cheng, H.M. (2010). Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials.19, 772-777.
  • Fang, L., Zhang, B., Li, W., Huang, K. & Zihang, Q. (2014). Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochimica Acta. 148, 164-169.
  • Jayachandiran, J., Yesuraj, J., Arivanandhan, M., Raja, A., Suthanthiraraj, A.S., Jayavel, R. & Nedumaran, D. (2018). Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. Journal of Inorganic and Organometallic Polymers and Materials. 28 (5), 2046-2055.
  • Mohan, R., Kıran, K.A.B.V., Naman, A. & Subha, J. (2014). Studies on electrochemical properties of ZnO/rGO nanocomposites as electrode materials for supercapacitors. Fullerenes, Nanotubes and Carbon Nanostructures. 23, 691-694.
  • Hummers, M.S. & Offeman, R.E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society. 80(6), 1339.
  • Xu, C., Wang, X. & Zhu, J. (2008). Graphene-metal particle nanocomposites. Journal of Physical Chemistry.112, 19841-19845.
  • Cai, D. & Song, M. (2007). Preparation of fully exfoliated graphite oxide nano platelets in organic solvents. Journal of Materials Chemistry. 17(35), 3678-3680.
  • Lu, C.H. & Yeh, C.H. (2000). Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceramics International. 26, 351-357.
  • Palanikumar, L., Ramasamy, S., Hariharan, G. & Balachandran, C. (2013). Influence of particle size of nano zinc oxide on the controlled delivery of amoxicillin. Applications Nano Science. 3, 441-451.
  • Gusattia, M., Barrosoa, G. S., de Camposb, C.E.M., de Souzaa, D. A. R., Rosarioa, J., de A. Do, Limaa, R.B., Milliolia,C.C.,Silvaa, L.A.,Riellaa, H. G. & Kuhnena, N.C. (2011). Effect of different precursors in the chemical synthesis of ZnO nano crystals. Materials Research. 14(2), 264-267.
  • Alver, Ü. & Tanrıverdi, A. (2016). Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Applied Surface Science. 378, 368-374.
  • Baruah, S. & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science Technology of Advanced Materials. 10, 013001-013019.
  • Yogamalar, N.R. & Chandra Bose, A.C. (2011). Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor. Journal of Solid State Chemistry. 184, 12-20.
  • Peng, Y. Ji, J. & Chen, D. (2015). Ultrasound assisted synthesis of ZnO/reduced graphene oxidecomposites with enhanced photocatalytic activity andanti-photocorrosion. Applied Surface Science. 356, 762-768.
  • Wang, H.L., Robinson, J.T., Diankov, G. & Dai, .J. (2010). Nanocrystal growth on graphene with various degrees of oxidation. Journal of American Chemical Society. 132, 3270-3271.
  • Zhang, J., Kong, L.B., Cai, J.J., Luo, Y.C. & Kang, L. (2010). Nanoflake-like cobalt hydroxide/ordered mesoporous carbon composite for electrochemical capacitors. Journal of Solid State Electrochemistry. 14, 2065-2075.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ayça Tanrıverdi 0000-0002-0658-8576

Publication Date June 28, 2020
Submission Date January 30, 2020
Acceptance Date May 19, 2020
Published in Issue Year 2020

Cite

APA Tanrıverdi, A. (2020). İndirgenmiş Grafen Oksit/Çinko Oksit Kompozitlerin Üretimi ve Süper Kapasitör Uygulamaları. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 201-210. https://doi.org/10.35193/bseufbd.682266