Research Article
BibTex RIS Cite

Kalça Protezlerinde Loft Tasarım Aracı Kesit Değişimlerinin Gerilme Miktarı Üzerine Etkilerinin İncelenmesi

Year 2020, , 837 - 849, 30.12.2020
https://doi.org/10.35193/bseufbd.706661

Abstract

Kalça eklemlerinde ileri derecede hasar oluşmuş hastalarda, kalça protezleri hasarlı eklemin yapay bir eklem olarak değiştirilmesi sonucunda kullanılmaktadır. Kalça protezi, kobalt krom veya titanyumdan imal edilen ana parçalar ile bunların eklemleştiği yerde plastik, metal veya seramik ara parçalardan oluşmaktadır. Kalça protezleri ve uygulamaları ile ilgili birçok tasarımsal problemin olduğu bilinmektedir. Bu sorunların çözümü hedeflenerek, endüstriyel tasarıma sahip üç farklı tip tasarım geometrisi seçilmiş ve Catia V5 programı ile modellenmiştir. Bu protezlerin ve femurun montaj tasarımına etkiyen kuvvetler dikkate alınarak, emniyet katsayısı değerleri, sonlu elemanlar yönteminde, mühendislik gerilmeleri altında hesaplanmıştır. Bu hesaplamalar dikkate alındığında üç farklı endüstriyel tasarım içinden hacim oranı düşük olup gerilme miktarı diğer tasarımlara göre daha düşük olan tasarım tipi belirlenmiştir. Bu tasarımın 6 farklı kesiti içine alan bir loft tasarım aracı ile modellenebileceği gözlemlenmiştir. Bu kesitlerde yer alan profillerin ölçü değişimi ana tasarım geometrisinden 1 mm ofset yapılarak modellenmiştir. Bu modelleme yapılırken Taguchi L8 deney tasarımı kullanılmıştır. Böylece her bir kesitin mukavemet ve hacim özelliklerine etkisi istatiksel yöntemler kullanılarak incelenmiştir. Tersine mühendislik ile tasarlanan bu protezlerin hacim miktarı 31285 ile 18438 mm3 ölçüleri arasında değişkenlik göstermektedir. Minimum hacim ve maksimum emniyet katsayısı elde edilebilmesi için gerekli tasarım seçimleri bu sonuçlar dikkate alınarak yapılmıştır. Minimum tasarım için deney tasarımı parametreleri A2, B1, C1, D2, E1, F1 olarak belirlenmiştir. Bu sonuçlara göre hacim 17975mm3 ve gövde de oluşan maksimum gerilme 774 MPa olarak bulunmuştur. Böylece hacim miktarı %4 oranında azaltılırken emniyet katsayısı ise %8 oranında artırılmıştır. Bu sonuçlar dikkate alındığında maksimum emniyet minimum hacim miktarı için elde edilmiştir.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi

Project Number

2018-01.BŞEÜ.03-04

Thanks

Bu çalışma, Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından desteklenen 2018-01.BŞEÜ.03-04 numaralı proje kapsamında yürütülmüştür. Yazarlar, Bilecik Şeyh Edebali Üniversitesine mali desteklerinden dolayı teşekkür etmektedir

References

  • Dangles, C. J., Altstetter, C. J. (2010). Failure of the modular neck in a total hip arthroplasty. J Arthroplasty, 25 (7), 1169, 5-7.
  • Sotereanos, N. G., Sauber, T. J., Tupis, T. T. (2013). Modular femoral neck fracture after primary total hip arthroplasty. J Arthroplasty, 28 (1), 196. 7-9.
  • Morley, D., Starks, I., Lim J. (2012). A case of a C-Stem fracture at the head-neck junction and a review of the literature. Case Rep Orthop, Article ID 158604
  • Baratz, M. D., Abdeen, A. (2014). Fracture of a tapered femoral neck after total hip arthroplasty. JBJS Case Connect, 4 (1), 1-4.
  • Garellick, G, K€arrholm, J, Rogmark, C, Rolfson, O. (2012). Swedish Hip Arthroplasty Register: Annual Report; Available at: www.shpr.se/en/
  • National Joint Registry for England. Report Wales and Northern Ireland. 7the11th Annual Report, 2010-2014. Available at: www.njrcentre.org.uk.
  • Charnley J. (1975). Fracture of femoral prostheses in total hip replacement. A clinical study. Clin Orthop., 11:105-120.
  • Galante, J. O. (1980). Causes of fractures of the femoral component in total hip replacement. J Bone Jt Surg Am., 62(4), 670-673.
  • Lizano-Díez, X, Alentorn-Geli, E, León-García, A, Marqués-López, F. (2016). Fracture of the femoral component after a lightning strike injury: A case report. Acta Orthop Traumatol Turc, 51(1), 84-87.
  • Benthien, J. P., & Siepen, W. (2014). Early failure of a non-cemented femoral stem after minimal-invasive total hip arthroplasty: cause analysis and classification. Musculoskeletal surgery, 98(1), 77-80.
  • Mulroy, W. F., Estok, D. M., Harris, W. H. (1995). Total hip arthroplasty with use of so-called second-generation cementing techniques. J Bone Joint Surg, 77(12),1845–52.
  • Yamasaki, S., Masuhara, K., Fuji, T. (2006). Fracture of the precoated femoral component after cemented total hip arthroplasty, Journal of Orthopaedic Science, 11(3), 308-311.
  • Park, J. B. (2000). Hip Joint Prosthesis Fixation-Problems and Possible Solutions. The Biomedical Engineering Handbook, Second Edition, CRC Press LLC, 46.1 - 46.3
  • Jeffrey, N. K. (2006). Total joint replacement in osteoarthritis. Best Practice & Research Clinical Rheumatology, 20(1), 145–153.
  • Griza, S., Zanon, G., Silva, E.P., Bertoni, F., Reguly, A., Strohaecker, T.R. (2009). Design aspects involved in a cemented THA stem failure case. Engineering Failure Analysis, 16(1), 512–520.
  • Hernandez-Rodriguez, M. A. L., Ortega-Saenz, J. A., Contreras-Hernandez G..R. (2010). Failure analysis of a total hip prosthesis implanted in active patient. Journal of the Mechanical Behavior of Biomedical Materials. 3, 619–622.
  • Paliwal, M., Allan, D. G., Filip, P. (2010). Failure analysis of three uncemented titanium-alloy modular total hip stems. Engineering Failure Analysis. 17(5), 1230–1238.
  • Bennett, D., Goswami, T. (2008). Finite element analysis of hip stem designs. Materials & Design. 29(1), 45–60
  • Senalp, A. Z., Kayabaşı, O., Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28, 1577–1583.
  • Niesłony, P., Grzesik, W., Laskowski, P., Sienawski, J. (2014). Numerical and Experimental Analysis of Residual Stresses Generated in the Machining of Ti6Al4V Titanium Alloy. 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 78–83.
  • Katarina Colic, Aleksandar Sedmak, Aleksandar Grbovic, Uros Tatic, Simon Sedmak, Branislav Djordjevic, (2016), Finite Element Modeling of Hip Implant Static Loading, Procedia Engineering, 149, 257-262.
  • Kayabaşı, O., Erzincanlı, F. (2006) Finite element modeling and analysis of new cemented hip prosthesis. Advances in Engineering Software, 37, 477-483.
  • El’Sheikh, H. F., MacDonald, B. J., Hashmi, M. S. J. (2003). Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. Journal of Materials Processing Technology, 143–144, 249-255,
  • Black, J., Hastings, G. (1998). Handbook of Biomaterial Properties, Chapman & Hall, London., Springer US10.1007/978-1-4615-5801-9
  • Nas E and Öztürk B. (2018). Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials. Mater Test, 60, 519-524.
  • Öztürk, B, Uğur, L, Erzincanlı, F, Küçük, Ö. (2018). Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis". International Scientific and Vocational Studies Journal 2, 31-39
  • Kara F and Öztürk B. (2018). Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard machining of DIN 1.2738 mold steel. Sensor Rev 2018; 39. https://doi.org/10.1108/SR-12-2017-0266
  • Öztürk, B. ve Küçük, Ö., (2019). Bakır ve Pirinç Talaşı ile Takviye Edilmiş Boru Bağlantı Elemanlarının İki Farklı Üretim Türü İçin (SEC) Özel Enerji Tüketim Modeli. Politeknik Dergisi, DOI: 10.2339/politeknik.473105.
  • Öztürk, B., Erzincanlı, F., Development of femoral component design geometry by using DMROVAS (design method requiring optimum volume and safety), www.emeraldinsight.com/0264-4401.htm7
  • Kara, F., Takmaz, A., (2019). Optimization by the Taguchi method of effect on the surface roughness of cryogenic treatment applied to cutting tools, Material Testing, 61(11): 1101-1104.
  • Kara, F., (2018). Optimization of surface roughness in finish milling of AISI P20+S plastic mold steel, Materials and Technology, 52(2):195–200.

Investigation of the Effects of Loft Design Tool Cross-Section Changes on Stress Amount in Hip Prosthesis

Year 2020, , 837 - 849, 30.12.2020
https://doi.org/10.35193/bseufbd.706661

Abstract

In patients with severe damage to the hip joints, hip prostheses are used as a result of replacing the damaged joint as an artificial joint. The hip prosthesis consists of main parts made of cobalt chrome or titanium and plastic, metal or ceramic spacers where they join. It is known that there are many design problems related to hip prostheses and their applications. With the aim of solving these problems, three different types of design geometry with industrial design were selected and modeled with the Catia V5 program. Considering the forces affecting the assembly design of these prostheses and femur, the safety coefficient values were calculated under engineering stress in the finite element method. Considering these calculations, among three different industrial designs, the design type whose volume ratio is low and the stress amount is lower than the other designs was determined. It has been observed that this design can be modeled with a loft design tool that includes 6 different sections. The size variation of the profiles in these sections is modeled by making 1 mm offset from the main design geometry. Taguchi L8 experimental design was used for this modeling. Thus, the effect of each section on the strength and volume properties has been analyzed using statistical methods. The volume of these prostheses designed with reverse engineering varies between 31285 and 18438 mm3. Necessary design choices were made by taking these results into consideration in order to obtain minimum volume and maximum safety coefficient. Experimental design parameters for the minimum design were determined as A2, B1, C1, D2, E1, F1. According to these results, the volume was found to be 17975mm3 and the maximum stress on the body as 774 MPa. Thus, the volume amount was reduced by 4%, while the safety factor was increased by 8%. Considering these results, the maximum safety has been obtained for the minimum amount of volume.

Project Number

2018-01.BŞEÜ.03-04

References

  • Dangles, C. J., Altstetter, C. J. (2010). Failure of the modular neck in a total hip arthroplasty. J Arthroplasty, 25 (7), 1169, 5-7.
  • Sotereanos, N. G., Sauber, T. J., Tupis, T. T. (2013). Modular femoral neck fracture after primary total hip arthroplasty. J Arthroplasty, 28 (1), 196. 7-9.
  • Morley, D., Starks, I., Lim J. (2012). A case of a C-Stem fracture at the head-neck junction and a review of the literature. Case Rep Orthop, Article ID 158604
  • Baratz, M. D., Abdeen, A. (2014). Fracture of a tapered femoral neck after total hip arthroplasty. JBJS Case Connect, 4 (1), 1-4.
  • Garellick, G, K€arrholm, J, Rogmark, C, Rolfson, O. (2012). Swedish Hip Arthroplasty Register: Annual Report; Available at: www.shpr.se/en/
  • National Joint Registry for England. Report Wales and Northern Ireland. 7the11th Annual Report, 2010-2014. Available at: www.njrcentre.org.uk.
  • Charnley J. (1975). Fracture of femoral prostheses in total hip replacement. A clinical study. Clin Orthop., 11:105-120.
  • Galante, J. O. (1980). Causes of fractures of the femoral component in total hip replacement. J Bone Jt Surg Am., 62(4), 670-673.
  • Lizano-Díez, X, Alentorn-Geli, E, León-García, A, Marqués-López, F. (2016). Fracture of the femoral component after a lightning strike injury: A case report. Acta Orthop Traumatol Turc, 51(1), 84-87.
  • Benthien, J. P., & Siepen, W. (2014). Early failure of a non-cemented femoral stem after minimal-invasive total hip arthroplasty: cause analysis and classification. Musculoskeletal surgery, 98(1), 77-80.
  • Mulroy, W. F., Estok, D. M., Harris, W. H. (1995). Total hip arthroplasty with use of so-called second-generation cementing techniques. J Bone Joint Surg, 77(12),1845–52.
  • Yamasaki, S., Masuhara, K., Fuji, T. (2006). Fracture of the precoated femoral component after cemented total hip arthroplasty, Journal of Orthopaedic Science, 11(3), 308-311.
  • Park, J. B. (2000). Hip Joint Prosthesis Fixation-Problems and Possible Solutions. The Biomedical Engineering Handbook, Second Edition, CRC Press LLC, 46.1 - 46.3
  • Jeffrey, N. K. (2006). Total joint replacement in osteoarthritis. Best Practice & Research Clinical Rheumatology, 20(1), 145–153.
  • Griza, S., Zanon, G., Silva, E.P., Bertoni, F., Reguly, A., Strohaecker, T.R. (2009). Design aspects involved in a cemented THA stem failure case. Engineering Failure Analysis, 16(1), 512–520.
  • Hernandez-Rodriguez, M. A. L., Ortega-Saenz, J. A., Contreras-Hernandez G..R. (2010). Failure analysis of a total hip prosthesis implanted in active patient. Journal of the Mechanical Behavior of Biomedical Materials. 3, 619–622.
  • Paliwal, M., Allan, D. G., Filip, P. (2010). Failure analysis of three uncemented titanium-alloy modular total hip stems. Engineering Failure Analysis. 17(5), 1230–1238.
  • Bennett, D., Goswami, T. (2008). Finite element analysis of hip stem designs. Materials & Design. 29(1), 45–60
  • Senalp, A. Z., Kayabaşı, O., Kurtaran, H. (2007). Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28, 1577–1583.
  • Niesłony, P., Grzesik, W., Laskowski, P., Sienawski, J. (2014). Numerical and Experimental Analysis of Residual Stresses Generated in the Machining of Ti6Al4V Titanium Alloy. 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 78–83.
  • Katarina Colic, Aleksandar Sedmak, Aleksandar Grbovic, Uros Tatic, Simon Sedmak, Branislav Djordjevic, (2016), Finite Element Modeling of Hip Implant Static Loading, Procedia Engineering, 149, 257-262.
  • Kayabaşı, O., Erzincanlı, F. (2006) Finite element modeling and analysis of new cemented hip prosthesis. Advances in Engineering Software, 37, 477-483.
  • El’Sheikh, H. F., MacDonald, B. J., Hashmi, M. S. J. (2003). Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. Journal of Materials Processing Technology, 143–144, 249-255,
  • Black, J., Hastings, G. (1998). Handbook of Biomaterial Properties, Chapman & Hall, London., Springer US10.1007/978-1-4615-5801-9
  • Nas E and Öztürk B. (2018). Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials. Mater Test, 60, 519-524.
  • Öztürk, B, Uğur, L, Erzincanlı, F, Küçük, Ö. (2018). Optimization of Polyethylene Inserts Design Geometry of Total Knee Prosthesis". International Scientific and Vocational Studies Journal 2, 31-39
  • Kara F and Öztürk B. (2018). Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard machining of DIN 1.2738 mold steel. Sensor Rev 2018; 39. https://doi.org/10.1108/SR-12-2017-0266
  • Öztürk, B. ve Küçük, Ö., (2019). Bakır ve Pirinç Talaşı ile Takviye Edilmiş Boru Bağlantı Elemanlarının İki Farklı Üretim Türü İçin (SEC) Özel Enerji Tüketim Modeli. Politeknik Dergisi, DOI: 10.2339/politeknik.473105.
  • Öztürk, B., Erzincanlı, F., Development of femoral component design geometry by using DMROVAS (design method requiring optimum volume and safety), www.emeraldinsight.com/0264-4401.htm7
  • Kara, F., Takmaz, A., (2019). Optimization by the Taguchi method of effect on the surface roughness of cryogenic treatment applied to cutting tools, Material Testing, 61(11): 1101-1104.
  • Kara, F., (2018). Optimization of surface roughness in finish milling of AISI P20+S plastic mold steel, Materials and Technology, 52(2):195–200.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özkan Küçük 0000-0002-4337-4454

Burak Öztürk 0000-0002-1018-6545

Project Number 2018-01.BŞEÜ.03-04
Publication Date December 30, 2020
Submission Date March 20, 2020
Acceptance Date August 23, 2020
Published in Issue Year 2020

Cite

APA Küçük, Ö., & Öztürk, B. (2020). Kalça Protezlerinde Loft Tasarım Aracı Kesit Değişimlerinin Gerilme Miktarı Üzerine Etkilerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 837-849. https://doi.org/10.35193/bseufbd.706661