Co Katkılı SnO2 Numunelerinin Sentez ve Karakterizasyonu
Year 2020,
, 152 - 160, 28.06.2020
Tankut Ateş
,
Omer Kaygili
,
Niyazi Bulut
,
Havva Esma Okur
,
Serhat Keser
,
İ.s. Yahıa
,
Süleyman Köytepe
,
Turgay Seçkin
,
İmren Özcan
Turan Ince
Abstract
Yüksek kristalleşmeye sahip katkısız ve Co katkılı SnO2 numuneleri başarılı bir biçimde hazırlandı. Co içeriğinin SnO2’nin termal ve morfolojik özellikleri üzerine etkileri araştırıldı. Co ilavesiyle Kristal büyüklüğünde ve birim hücre parametrelerinde değişimler tespit edildi. Co ilavesiyle faz bileşimi değişmedi. Hem X-ışını kırınımı hem de Fourier dönüşümlü kızılötesi sonuçları her bir numune için SnO2 fazının oluşumunu doğruladı. Üretilen numunelerin oda sıcaklığından 900 °C’ye kadar termal kararlılığı gözlendi. Morfoloji Co içeriğinden etkilendi ve enerji dağılımlı X-ışını sonuçları SnO2 yapısı içerisine Co’ın nüfuz ettiğini doğruladı.
References
- Xu, L., Zeng, W., & Li, Y. (2018). Synthesis of morphology and size-controllable SnO2 hierarchical structures and their gas-sensing performance. Appl. Surf. Sci, 457, 1064–1071.
- Das, S., & Jayaraman, V. (2014). SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci, 66, 112–255.
- Palakawong, N., Sun, Y.Y., Thienprasert, J.T., Zhang, S., & Limpijumnong, S. (2017). Ga acceptor defects in SnO2 revisited: A hybrid functional study. Ceram. Int., 43, S364–S368.
- Jiang, Q., Zhang, X., & You, J. (2018). SnO2: A wonderful electron transport layer for perovskite solar cells. Small,14, 1-14.
- Yu, S., Zheng, H., Li, L., & Chen, S. (2017). Highly conducting and transparent antimony doped tin oxide thin films: The role of sputtering power density. Ceram. Int., 43, 5654–5660.
- Manikandan, K., Dhanuskodi, S., Thomas, A.R., Maheswari, N., Muralidharan, G., & Sastikumar, D., (2016). Size–strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Adv., 6, 90559–90570.
- Liu, D., Pan, J., Tang, J., Liu, W., Bai, S., & Luo, R., (2019). Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids., 124, 36–43.
- Bhatnagar, M., Dhall, S., Kaushik, V., Kaushal, A., & Mehta, B.R., (2017). Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, sensor. Actuat. B-Chem., 246, 336–343.
- Wang, H., Jiang, G., Tan, X., Liao, J., Yang, X., Yuan, R., & Chai, Y., (2018). Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorg. Chem. Commun., 95, 67–72.
- Li, H., Su, Q., Kang, J., Huang, M., Feng, M., Feng, H., Huang, P., & Du, G., (2018). Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett., 217, 276–280.
- Kang, Y., Li, Z., Xu, K., He, X., Wei, S., & Cao, Y., (2019). Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. J. Alloys Compds., 779, 728–734.
- Horti, N.C., Kamatagi, M.D., Patil, N.R., Wari, M.N., & Inamdar, S.R., (2018). Photoluminescence properties of SnO2 nanoparticles: Effect of solvents. Optik, 169, 314–320.
- Razeghizadeh, A.R., Kazeminezhad, I., Zalaghi, L., & Rafee, V., (2018). Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran. J. Chem. Chem. Eng., 37, 25-32.
- Razeghizadeh, A.R., Zalaghi, L., Kazeminezhad, I., & Rafee, V., (2017). Growth and optical properties investigation of pure and Al-doped SnO2 nanostructures by sol-gel method. Iran. J. Chem. Chem. Eng., 36, 1-8.
- Guo, J., Zhang, J., Gong, H., Ju, D., & Cao, B., (2016). Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B-Chem., 226, 266–272.
- Pan, Y., Wan, T., Du, H., Qu, B., Wang, D., Ha, T.J., & Chu, D., (2018). Mimicking synaptic plasticity and learning behaviours in solution processed SnO2 memristor. J. Alloys Compds., 757, 496–503.
- Muz, İ., & Kurban, M., (2019). A comprehensive study of electronic structure and optical properties of carbon nanotubes with doped B, Al, Ga, Si, Ge, N, P and As and different diameters. J. Alloys Compds., 802, 25-35.
- Muz, İ., Göktaş, F., & Kurban, M., (2020). 3d-transition metals (Cu, Fe, Mn, Ni and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations, Theor. Chem. Acc., 139, 1-8.
- Kurban, M., Kurban, H., & Dalkılıç, M., (2019). Controlling structural and electronic properties of ZnO NPs: Density-functional tight-binding method. B. Int. J. Sci. and Tech. Res., 3, 35-39.
- Zhang, X., Huang, X., Zhang, X., Xia, L., Zhong, B., Zhang, T., & Wen, G., (2016). Flexible carbonized cotton covered by graphene/Co-Doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries. Electrochim. Acta., 222, 518–527.
- Jiang, Z., Yin, M., & Wang, C., (2017). Facile synthesis of Ca2+/Au Co-doped SnO2 nanofibers and their application in acetone sensor. Mater. Lett., 194, 209–212.
- Ma, Y., Ma, Y., Ulissi, U., Ji, Y., Streb, C., Bresser, D., & Passerini, S., (2018). Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim. Acta., 277, 100–109.
- Luo, M., & Sun, F., (2014). Magnetic properties of Co-doped SnO2 at different carrier concentrations. Optik, 125, 2157–2159.
- Jiang, H., Liu, X.F., Zhou, Z.Y., Wu, Z.B., He, B., & Yu, R.H., (2011). The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci., 258, 236–241.
- Silva, T.F.S., Silvestre, A.J., Rocha, B.G.M., Nunes, M.R., Monteiro, O.C., & Martins, L.M.D.R.S., (2017). Enhancing alkane oxidation using Co-doped SnO2 nanoparticles as catalysts. Catal. Commun., 96, 19–22.
- Kou, X., Wang, C. Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y., & Lu, G., (2016). Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens. Actuator. B-Chem., 236, 425-432.
- Cullity, B.D., (1978). Elements of X-Ray Diffraction 2nd ed. Addison–Wesley Publishing Company, Massachusetts, 102.
- Zhu, S., Chen, C., & Li, Z., (2019). Magnetic enhancement and magnetic signal tunability of (Mn, Co) Co-Doped SnO2 dilute magnetic semiconductor nanoparticles. J. Magn. Magn. Mater., 471, 370–380.
- Khan, S.A., Kanwal, S., Rizwan, K., & Shahid, S., (2018). Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from clerodendrum inerme. Microb. Pathog., 125, 366–384.
- Shaikh, F.I., Chikhale, L.P., Patil, J.Y., Mulla, I.S., & Suryavanshi, S.S., (2017). Enhanced acetone sensing performance of nanostructured Sm2O3 doped SnO2 thick films. J. Rare. Earth., 35, 813–823.
Synthesis and Characterization of Co-Doped SnO2 Samples
Year 2020,
, 152 - 160, 28.06.2020
Tankut Ateş
,
Omer Kaygili
,
Niyazi Bulut
,
Havva Esma Okur
,
Serhat Keser
,
İ.s. Yahıa
,
Süleyman Köytepe
,
Turgay Seçkin
,
İmren Özcan
Turan Ince
Abstract
The un-doped and Co-doped SnO2 samples having high crystallinity were successfully prepared. The effects of Co content on the structural, thermal and morphological properties of SnO2 were investigated. Changes in the crystallite size and unit cell parameters were detected with adding of Co. The phase composition did not alter with the addition of Co. Both X-ray diffraction and Fourier transform infrared results confirmed the formation of the SnO2 structure for each sample. The thermal stability of the as-produced samples from room temperature to 900 °C was observed. The morphology was affected by Co content, and energy dispersive X-ray results verified the introduction of Co into the SnO2 structure.
Supporting Institution
Fırat Üniversitesi Bilimsel Arastırma Projeleri (FÜBAP) Koordinasyon Birimi
Thanks
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant No. R.G.P.2/65/40. This work was also supported by the Management Unit of Scientific Research projects of Firat University (FÜBAP) (Project Number: FF.18.20).
References
- Xu, L., Zeng, W., & Li, Y. (2018). Synthesis of morphology and size-controllable SnO2 hierarchical structures and their gas-sensing performance. Appl. Surf. Sci, 457, 1064–1071.
- Das, S., & Jayaraman, V. (2014). SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci, 66, 112–255.
- Palakawong, N., Sun, Y.Y., Thienprasert, J.T., Zhang, S., & Limpijumnong, S. (2017). Ga acceptor defects in SnO2 revisited: A hybrid functional study. Ceram. Int., 43, S364–S368.
- Jiang, Q., Zhang, X., & You, J. (2018). SnO2: A wonderful electron transport layer for perovskite solar cells. Small,14, 1-14.
- Yu, S., Zheng, H., Li, L., & Chen, S. (2017). Highly conducting and transparent antimony doped tin oxide thin films: The role of sputtering power density. Ceram. Int., 43, 5654–5660.
- Manikandan, K., Dhanuskodi, S., Thomas, A.R., Maheswari, N., Muralidharan, G., & Sastikumar, D., (2016). Size–strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Adv., 6, 90559–90570.
- Liu, D., Pan, J., Tang, J., Liu, W., Bai, S., & Luo, R., (2019). Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids., 124, 36–43.
- Bhatnagar, M., Dhall, S., Kaushik, V., Kaushal, A., & Mehta, B.R., (2017). Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, sensor. Actuat. B-Chem., 246, 336–343.
- Wang, H., Jiang, G., Tan, X., Liao, J., Yang, X., Yuan, R., & Chai, Y., (2018). Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorg. Chem. Commun., 95, 67–72.
- Li, H., Su, Q., Kang, J., Huang, M., Feng, M., Feng, H., Huang, P., & Du, G., (2018). Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett., 217, 276–280.
- Kang, Y., Li, Z., Xu, K., He, X., Wei, S., & Cao, Y., (2019). Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. J. Alloys Compds., 779, 728–734.
- Horti, N.C., Kamatagi, M.D., Patil, N.R., Wari, M.N., & Inamdar, S.R., (2018). Photoluminescence properties of SnO2 nanoparticles: Effect of solvents. Optik, 169, 314–320.
- Razeghizadeh, A.R., Kazeminezhad, I., Zalaghi, L., & Rafee, V., (2018). Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran. J. Chem. Chem. Eng., 37, 25-32.
- Razeghizadeh, A.R., Zalaghi, L., Kazeminezhad, I., & Rafee, V., (2017). Growth and optical properties investigation of pure and Al-doped SnO2 nanostructures by sol-gel method. Iran. J. Chem. Chem. Eng., 36, 1-8.
- Guo, J., Zhang, J., Gong, H., Ju, D., & Cao, B., (2016). Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B-Chem., 226, 266–272.
- Pan, Y., Wan, T., Du, H., Qu, B., Wang, D., Ha, T.J., & Chu, D., (2018). Mimicking synaptic plasticity and learning behaviours in solution processed SnO2 memristor. J. Alloys Compds., 757, 496–503.
- Muz, İ., & Kurban, M., (2019). A comprehensive study of electronic structure and optical properties of carbon nanotubes with doped B, Al, Ga, Si, Ge, N, P and As and different diameters. J. Alloys Compds., 802, 25-35.
- Muz, İ., Göktaş, F., & Kurban, M., (2020). 3d-transition metals (Cu, Fe, Mn, Ni and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations, Theor. Chem. Acc., 139, 1-8.
- Kurban, M., Kurban, H., & Dalkılıç, M., (2019). Controlling structural and electronic properties of ZnO NPs: Density-functional tight-binding method. B. Int. J. Sci. and Tech. Res., 3, 35-39.
- Zhang, X., Huang, X., Zhang, X., Xia, L., Zhong, B., Zhang, T., & Wen, G., (2016). Flexible carbonized cotton covered by graphene/Co-Doped SnO2 as free-standing and binder-free anode material for lithium-ions batteries. Electrochim. Acta., 222, 518–527.
- Jiang, Z., Yin, M., & Wang, C., (2017). Facile synthesis of Ca2+/Au Co-doped SnO2 nanofibers and their application in acetone sensor. Mater. Lett., 194, 209–212.
- Ma, Y., Ma, Y., Ulissi, U., Ji, Y., Streb, C., Bresser, D., & Passerini, S., (2018). Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim. Acta., 277, 100–109.
- Luo, M., & Sun, F., (2014). Magnetic properties of Co-doped SnO2 at different carrier concentrations. Optik, 125, 2157–2159.
- Jiang, H., Liu, X.F., Zhou, Z.Y., Wu, Z.B., He, B., & Yu, R.H., (2011). The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci., 258, 236–241.
- Silva, T.F.S., Silvestre, A.J., Rocha, B.G.M., Nunes, M.R., Monteiro, O.C., & Martins, L.M.D.R.S., (2017). Enhancing alkane oxidation using Co-doped SnO2 nanoparticles as catalysts. Catal. Commun., 96, 19–22.
- Kou, X., Wang, C. Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y., & Lu, G., (2016). Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties. Sens. Actuator. B-Chem., 236, 425-432.
- Cullity, B.D., (1978). Elements of X-Ray Diffraction 2nd ed. Addison–Wesley Publishing Company, Massachusetts, 102.
- Zhu, S., Chen, C., & Li, Z., (2019). Magnetic enhancement and magnetic signal tunability of (Mn, Co) Co-Doped SnO2 dilute magnetic semiconductor nanoparticles. J. Magn. Magn. Mater., 471, 370–380.
- Khan, S.A., Kanwal, S., Rizwan, K., & Shahid, S., (2018). Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from clerodendrum inerme. Microb. Pathog., 125, 366–384.
- Shaikh, F.I., Chikhale, L.P., Patil, J.Y., Mulla, I.S., & Suryavanshi, S.S., (2017). Enhanced acetone sensing performance of nanostructured Sm2O3 doped SnO2 thick films. J. Rare. Earth., 35, 813–823.