Research Article
BibTex RIS Cite

Development of a New Fixing Nail for Long Bone Fractures

Year 2020, , 363 - 369, 28.06.2020
https://doi.org/10.35193/bseufbd.723422

Abstract

There are large and long bones in the human body called femur, tibia and humerus. These bones are broken with sudden impact effects caused by some undesirable events and treatment processes appear as extremely risky processes. The most important part of the treatment in all these bone fractures is to fix the broken bones until boiling is achieved. Many systems have been developed to fix broken bones in the treatment process. The most important method for fixing the big and long bones in the human body during the treatment process is intramedullary locking method. In this method, a nail is used which is placed in the bone cavity and which is used to fix the broken bones by screwing through the screw holes located at different points. When the existing technologies related to this method are examined, it is determined that many negativities are encountered. Within the scope of this study, a completely original and new intramedullar locking system has been developed, 3D modelling has been made, the working principles and the gains have been explained.

References

  • Mammoth Memory Web Page (2020). https://mammothmemory.net/biology/skeletons-and-bones/skeleton-and-bones/femur.html
  • Teach Me Anatomy Web Page (2020). https://teachmeanatomy.info/upper-limb/bones
  • Medimetal Medical Products Manufacturing and Trading Ltd. Web Page (2020). http://www.medimetal.hu/en/surgical-systems/tibia-femur-retr-femur-
  • Prof. Dr. Mehmet Subaşı (Ortopedi, ve Travmatoloji Uzmanı) Web Sayfası (2020). https://drmehmetsubasi.com/ortopedik-travma-humerus-kiriklari-16.html
  • International Center for Limb Lengthening (Rubin Institute for Advanced Orthopedics) Web Page (2020). http://www.limblength.org/treatments/lengthening-deformity-correction-devices/internal-fixation-rods-and-nails/
  • İmiroğlu, H.İ., et.all.(2014). Skopi kullanımı gerektirmeyen intramedüller distal kilitleme sistemi: yeni bir cihaz. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2:3, 189-198.
  • Rosa, N., et.all. (2019). Intramedullary nailing biomechanics: Evolution and challenges. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233:3, 295-308.
  • Chapman, MW. (1996). The role of intramedullary nailing in fracture management. In: The Science & Practice of Intramedullary Nailing, Browner DB (ed), 2nd edition, Williams & Wilkins, Philadelphia, 27-38.
  • Bucholz. RW., Brumback. RJ. (1996). Fractures of the Shaft of the Femur. In:Rockwood and Green's Fractures in Adults, Rockwood CA, Green DP(ed.), Lippincott-Raven Publishers, Philadelpia, 1827-1918.
  • Gausepohl, T., et.all. (2002). Anterograde femoral nailing: an anatomical determination of the correct entry point. Injury, 33,701–705.
  • Harper, MC., Carson, WL. (1987). Curvature of the femur and the proximal entry point for an intramedullary rod. Clin Orthop, 220,155–161.
  • Steriopuolos, K., et. all. (1997). Architecture of the femoral medullary canal and working length for intramedullary nailing. Acta Orthop Scand ,68,123–126.
  • Zuber, K., et. all. (1988). Form and dimension of the bone marrow cavity of the human femur with reference to the fit of intramedullary implants. Unfallchirurg, 91, 314–319.
  • Harma, A., et.all. (2005). The comparison of femoral curves and curves of contemporary intramedullary nails. Surg Radiol Anat, 27, 502–506.
  • Portakal, S., et.all. (2004). Kapalı Femur Cisim Kırıklarında Oymalı (Reamed) Teknikle Kilitli İntramedüller Çivileme ve Prospektif Degerlendirme Sonuçları. Hr.U.Tıp Fak. Der., Sayı:2.
  • Atay, T., et.all.(2008). Femur Diafiz Kırıklarında Genişleyebilir İntramedüller Çivi Sonuçlarımız. Kocatepe Tıp Dergisi The Medical Journal of Kocatepe, 9, 11-15.
  • Farouk, O., et.all. (1997). Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury,28:1, 7-12.
  • Krettek,C., et.all.(1997). New developments in stabilization of dia- and metaphyseal fractures of long tubular bones. Orthopade, 26, 408-21.
  • Egol, KA.(2004). Minimally invasive orthopaedic trauma surgery: a review of the latest techniques. Bull Hosp Jt Dis., 62, 6-12.
  • Apivatthakakul, T.(2007). Humerus, shaft. In: Tong GO, Bavonratanavech S, editors. AO Manual of fracture management, minimally invasive plate osteosynthesis (MIPO). New York: Thieme,p. 145-73.

Uzun Kemik Kırıkları İçin Yeni Bir Sabitleyici Çivi Geliştirilmesi

Year 2020, , 363 - 369, 28.06.2020
https://doi.org/10.35193/bseufbd.723422

Abstract

İnsan vücudunda femur, tibia ve humerus isimleri ile adlandırılan büyük ve uzun kemikler bulunmaktadır. Bu kemikler bazı istenmeyen olaylar sonucu oluşan ani darbe etkileri ile kırılmakta ve tedavi süreçleri son derece riskli süreçler olarak karşımıza çıkmaktadır. Tüm bu kemiklere ait kırılmalarda tedavinin en önemli bölümü kırık kemiklerin kaynama sağlanana kadar sabitlenmesidir. Kırık kemiklerin tedavi sürecinde sabitlenmesi konusunda bir çok sistem geliştirilmiştir. İnsan vücudunda bulunan büyük ve uzun kemiklerin tedavi süreci boyunca sabitlenmesi konusunda en önemli yöntem intramedüller kilitleme yöntemidir. Bu yöntemde kemik içi boşluğa yerleştirilen ve farklı noktalarında bulunan vida deliklerinden vidalama yapılarak kırık kemiklerin sabitlenmesini sağlayan bir çivi kullanılmaktadır. Bu yöntemle alakalı mevcut teknolojiler incelendiğinde bir çok olumsuzluklarla karşılaşıldığı tespit edilmiştir. Bu çalışma kapsamında tamamen özgün ve yeni bir intramedüller kilitleme sistemi geliştirilmiş, 3 boyutlu modellemesi yapılmış, çalışma ilkeleri ve sağladığı kazanımlar açıklanmıştır.

References

  • Mammoth Memory Web Page (2020). https://mammothmemory.net/biology/skeletons-and-bones/skeleton-and-bones/femur.html
  • Teach Me Anatomy Web Page (2020). https://teachmeanatomy.info/upper-limb/bones
  • Medimetal Medical Products Manufacturing and Trading Ltd. Web Page (2020). http://www.medimetal.hu/en/surgical-systems/tibia-femur-retr-femur-
  • Prof. Dr. Mehmet Subaşı (Ortopedi, ve Travmatoloji Uzmanı) Web Sayfası (2020). https://drmehmetsubasi.com/ortopedik-travma-humerus-kiriklari-16.html
  • International Center for Limb Lengthening (Rubin Institute for Advanced Orthopedics) Web Page (2020). http://www.limblength.org/treatments/lengthening-deformity-correction-devices/internal-fixation-rods-and-nails/
  • İmiroğlu, H.İ., et.all.(2014). Skopi kullanımı gerektirmeyen intramedüller distal kilitleme sistemi: yeni bir cihaz. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2:3, 189-198.
  • Rosa, N., et.all. (2019). Intramedullary nailing biomechanics: Evolution and challenges. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233:3, 295-308.
  • Chapman, MW. (1996). The role of intramedullary nailing in fracture management. In: The Science & Practice of Intramedullary Nailing, Browner DB (ed), 2nd edition, Williams & Wilkins, Philadelphia, 27-38.
  • Bucholz. RW., Brumback. RJ. (1996). Fractures of the Shaft of the Femur. In:Rockwood and Green's Fractures in Adults, Rockwood CA, Green DP(ed.), Lippincott-Raven Publishers, Philadelpia, 1827-1918.
  • Gausepohl, T., et.all. (2002). Anterograde femoral nailing: an anatomical determination of the correct entry point. Injury, 33,701–705.
  • Harper, MC., Carson, WL. (1987). Curvature of the femur and the proximal entry point for an intramedullary rod. Clin Orthop, 220,155–161.
  • Steriopuolos, K., et. all. (1997). Architecture of the femoral medullary canal and working length for intramedullary nailing. Acta Orthop Scand ,68,123–126.
  • Zuber, K., et. all. (1988). Form and dimension of the bone marrow cavity of the human femur with reference to the fit of intramedullary implants. Unfallchirurg, 91, 314–319.
  • Harma, A., et.all. (2005). The comparison of femoral curves and curves of contemporary intramedullary nails. Surg Radiol Anat, 27, 502–506.
  • Portakal, S., et.all. (2004). Kapalı Femur Cisim Kırıklarında Oymalı (Reamed) Teknikle Kilitli İntramedüller Çivileme ve Prospektif Degerlendirme Sonuçları. Hr.U.Tıp Fak. Der., Sayı:2.
  • Atay, T., et.all.(2008). Femur Diafiz Kırıklarında Genişleyebilir İntramedüller Çivi Sonuçlarımız. Kocatepe Tıp Dergisi The Medical Journal of Kocatepe, 9, 11-15.
  • Farouk, O., et.all. (1997). Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study. Injury,28:1, 7-12.
  • Krettek,C., et.all.(1997). New developments in stabilization of dia- and metaphyseal fractures of long tubular bones. Orthopade, 26, 408-21.
  • Egol, KA.(2004). Minimally invasive orthopaedic trauma surgery: a review of the latest techniques. Bull Hosp Jt Dis., 62, 6-12.
  • Apivatthakakul, T.(2007). Humerus, shaft. In: Tong GO, Bavonratanavech S, editors. AO Manual of fracture management, minimally invasive plate osteosynthesis (MIPO). New York: Thieme,p. 145-73.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Soylak 0000-0002-5617-5913

Publication Date June 28, 2020
Submission Date April 19, 2020
Acceptance Date June 8, 2020
Published in Issue Year 2020

Cite

APA Soylak, M. (2020). Uzun Kemik Kırıkları İçin Yeni Bir Sabitleyici Çivi Geliştirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 363-369. https://doi.org/10.35193/bseufbd.723422