Research Article
BibTex RIS Cite

Energetic And Exergetic Analysis of a Multistage Vapor Compression Refrigeration System With Various Refrigerants

Year 2021, , 42 - 55, 30.06.2021
https://doi.org/10.35193/bseufbd.826970

Abstract

Multi-stage vapor compression refrigeration cycles are used in low temperature applications, as well as in refrigeration applications where temperature difference is high. In recent years, as environmental factors have gained more importance, the use of alternative refrigerants has been investigated. Although the way to research and achieve energy savings in refrigeration cycles seems to be minimizing compressor work, it is more attractive to work on optimizing the Coefficient of Performance (COP) as it gives the minimum power required for unit cooling. In this study, the performances of different refrigerants when used in an ideal two-stage vapor compression refrigeration cycle are analyzed parametrically and compared. Separate COP values of the system were calculated for each refrigerant by changing the evaporation and condensation temperatures. In addition, the compressor work and the changes of the cooling loads of the system are also presented. The highest COP value in the system was obtained at 5 °C evaporation temperature in case of using the refrigerant R600 with 6.593, while the lowest value was obtained as 3.311 when R227ea was used at 50 °C condensation temperature.

References

  • Gupta, V. K. (1982). Optimization of multi stage refringerating systems. Doktora Tezi, Chhatrapati Sahuji Maharaj, Kanpur University, Institute of Engineering & Technology.
  • Öcal, P., & Pıhtılı, K. (2014). Kademeli Soğutma Sistemlerinde Belirli Soğutucu Akişkanlar İçin İkinci Kanun Analizi. 2. Ulusal İklimlendirme Soğutma Eğitimi Sempozyumu ve Sergisi, 23-25 Ekim 2014, Balıkesir.
  • Torrella, E., Llopis, R., & Cabello, R. (2009). Experimental evaluation of the inter-stage conditions of a two-stage refrigeration cycle using a compound compressor, Int. J. Refrig., 32 (2), 307–315. doi: 10.1016/j.ijrefrig.2008.05.006.
  • Çengel, Y. A., & Boles, M.A. (2002). Thermodynamics: An Engineering Approach, 4th ed. McGraw Hill, New York.
  • Ouadha, A., En-nacer, M., Adjlout, L., & Imine, O. (2005). Exergy analysis of a two-stage refrigeration cycle using two natural substitutes of HCFC22, Int. J. Exergy, vol. 2 (1),14–30. doi: 10.1504/IJEX.2005.006430.
  • Baakeem, S. S., Orfi, J., & Alabdulkarem, A. (2018). Optimization of a multistage vapor-compression refrigeration system for various refrigerants, Appl. Therm. Eng., 136, 84–96. doi: 10.1016/j.applthermaleng.2018.02.071.
  • Liu, S., Lu, F., Dia, B., Nian, V., Li, H., Qi, H. & Li, J. (2019). Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit, Energy, 189, 116-143. doi: 10.1016/j.energy.2019.116143.
  • Voloshchuk. V., Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor.
  • Xuan, X. C., (2003) Optimum staging of multistage exo-reversible refrigeration systems, Cryogenics, 43 (2), 117–124. doi: 10.1016/S0011-2275(03)00049-3.
  • Nikolaidis C., & Probert, D. (1998). Exergy-method analysis of a two-stage vapour-compression refrigeration-plants performance, Appl. Energy, 60 (4), 241–256. doi: 10.1016/S0306-2619(98)00030-0.
  • Prasad, M. (1981). Optimum interstage pressure for two stage refrigeration system, ASHRAE J., 23, 58–60.
  • Zubair, S. M., & Khan, S. H. (1995). On Optimum Interstage Pressure for Two-Stage and Mechanical-Subcooling Vapor-Compression Refrigeration Cycles, J. Sol. Energy Eng., 117 (1), 64–66. doi: 10.1115/1.2847752.
  • Zubair, S., Yaqub, M., & Khan, S. (1996). Second-law-based thermodynamic analysis of two-stage and mechanical-subcooling refrigeration cycles, Int. J. Refrig. Int. Du Froid - INT J Refrig, 19, 506–516. doi: 10.1016/S0140-7007(96)00045-X.
  • Ratts, E. B., & Steven Brown, J. (2000). A generalized analysis for cascading single fluid vapor compression refrigeration cycles using an entropy generation minimization method, Int. J. Refrig., 23 (5), 353–365. doi: 10.1016/S0140-7007(99)00070-5.
  • Yumrutaş, R., Kunduz, M., & Kanoğlu, M. (2002). Exergy analysis of vapor compression refrigeration systems, Exergy, An Int. J., 2 (4), 266–272. doi: 10.1016/s1164-0235(02)00079-1.
  • Chopra, K., Sahni, V., & Mishra, R. S. (2015). Energy, exergy and sustainability analysis of two-stage vapour compression refrigeration system, J. Therm. Eng., 1 (4), 440–445. doi: 10.18186/jte.95418.
  • Anand, S., Gupta, A., & Tyagi, S. K. (2013). Simulation studies of refrigeration cycles: A review, Renew. Sustain. Energy Rev., 17, 260–277. doi: 10.1016/j.rser.2012.09.021.
  • Kabul, A., Kizilkan, Ö., & Yakut, A. K. (2008). Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a), Int. J. Energy Res., 32 (9), 824–836. doi: https://doi.org/10.1002/er.1396.
  • Kalaiselvam, S., & Saravanan, R. (2009). Exergy analysis of scroll compressors working with r22 , r407c , and r417a as refrigerant for hvac system, Thermal Science, 13 (1), 175–184. doi: 10.2298/TSCI0901175K.
  • Ahamed, J. U., Rahman, S., & Masjuki, H. H. (2010). Thermodynamic Performance Analysis of R-600 and R-600a as Refrigerant, Eng. e-Transaction, 5 (1), 11–18.
  • Ahamed, J. U., Saidur, R., & Masjuki, H. H. (2011). A review on exergy analysis of vapor compression refrigeration system, Renew. Sustain. Energy Rev., 15 (3), 1593–1600. doi: 10.1016/j.rser.2010.11.039.
  • Vincent, C. E., & Heun, M. K. (2006). Thermoeconomic Analysis & Design of Domestic Refrigeration Systems.

Çok Kademeli Buhar Sıkıştırmalı İdeal Soğutma Çevrimlerinde Farklı Soğutucu Akışkanlar Kullanarak Enerji ve Ekserji Analizi

Year 2021, , 42 - 55, 30.06.2021
https://doi.org/10.35193/bseufbd.826970

Abstract

Çok kademeli buhar sıkıştırmalı soğutma çevrimleri, düşük sıcaklık uygulamalarında kullanılmasının yanı sıra, sıcaklık farkının yüksek olduğu soğutma uygulamalarında da tercih edilmektedir. Son yıllarda çevresel faktörlerin daha fazla önem kazanması ile birlikte alternatif soğutucu akışkanlar kullanımı araştırılmaktadır. Soğutma çevrimlerinde enerji tasarrufunu araştırmanın ve sağlamanın yolu her ne kadar kompresör işini minimuma indirmek gibi görünse de, birim soğutma için gerekli minimum gücü verdiği için Performans Katsayısını (COP) optimize etme üzerinde çalışmak daha cazip gelmektedir. Bu çalışmada, iki kademeli buhar sıkıştırmalı ideal bir soğutma çevriminde kullanılması durumunda farklı soğutucu akışkanların performansları parametrik olarak incelenerek mukayeseleri yapılmıştır. Buharlaşma ve yoğuşma sıcaklıklarının değişimi ile her bir akışkan için sistemin ayrı ayrı COP değerleri hesaplanmıştır. Ayrıca sistemin kompresör işi ve soğutma yüklerinin değişimleri de sunulmuştur. Sistemde en yüksek COP değeri, 6.593 ile soğutucu akışkan R600 kullanılması durumunda 5 °C buharlaşma sıcaklığında elde edilirken, en düşük değer 3.311 ile 50 °C yoğuşma sıcaklığında R227ea kullanılması durumunda elde edilmiştir.

References

  • Gupta, V. K. (1982). Optimization of multi stage refringerating systems. Doktora Tezi, Chhatrapati Sahuji Maharaj, Kanpur University, Institute of Engineering & Technology.
  • Öcal, P., & Pıhtılı, K. (2014). Kademeli Soğutma Sistemlerinde Belirli Soğutucu Akişkanlar İçin İkinci Kanun Analizi. 2. Ulusal İklimlendirme Soğutma Eğitimi Sempozyumu ve Sergisi, 23-25 Ekim 2014, Balıkesir.
  • Torrella, E., Llopis, R., & Cabello, R. (2009). Experimental evaluation of the inter-stage conditions of a two-stage refrigeration cycle using a compound compressor, Int. J. Refrig., 32 (2), 307–315. doi: 10.1016/j.ijrefrig.2008.05.006.
  • Çengel, Y. A., & Boles, M.A. (2002). Thermodynamics: An Engineering Approach, 4th ed. McGraw Hill, New York.
  • Ouadha, A., En-nacer, M., Adjlout, L., & Imine, O. (2005). Exergy analysis of a two-stage refrigeration cycle using two natural substitutes of HCFC22, Int. J. Exergy, vol. 2 (1),14–30. doi: 10.1504/IJEX.2005.006430.
  • Baakeem, S. S., Orfi, J., & Alabdulkarem, A. (2018). Optimization of a multistage vapor-compression refrigeration system for various refrigerants, Appl. Therm. Eng., 136, 84–96. doi: 10.1016/j.applthermaleng.2018.02.071.
  • Liu, S., Lu, F., Dia, B., Nian, V., Li, H., Qi, H. & Li, J. (2019). Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit, Energy, 189, 116-143. doi: 10.1016/j.energy.2019.116143.
  • Voloshchuk. V., Thermodynamic Calculations of Two-Stage Vapor Compression Refrigeration Cycle with Flash Chamber and Separate Vapor.
  • Xuan, X. C., (2003) Optimum staging of multistage exo-reversible refrigeration systems, Cryogenics, 43 (2), 117–124. doi: 10.1016/S0011-2275(03)00049-3.
  • Nikolaidis C., & Probert, D. (1998). Exergy-method analysis of a two-stage vapour-compression refrigeration-plants performance, Appl. Energy, 60 (4), 241–256. doi: 10.1016/S0306-2619(98)00030-0.
  • Prasad, M. (1981). Optimum interstage pressure for two stage refrigeration system, ASHRAE J., 23, 58–60.
  • Zubair, S. M., & Khan, S. H. (1995). On Optimum Interstage Pressure for Two-Stage and Mechanical-Subcooling Vapor-Compression Refrigeration Cycles, J. Sol. Energy Eng., 117 (1), 64–66. doi: 10.1115/1.2847752.
  • Zubair, S., Yaqub, M., & Khan, S. (1996). Second-law-based thermodynamic analysis of two-stage and mechanical-subcooling refrigeration cycles, Int. J. Refrig. Int. Du Froid - INT J Refrig, 19, 506–516. doi: 10.1016/S0140-7007(96)00045-X.
  • Ratts, E. B., & Steven Brown, J. (2000). A generalized analysis for cascading single fluid vapor compression refrigeration cycles using an entropy generation minimization method, Int. J. Refrig., 23 (5), 353–365. doi: 10.1016/S0140-7007(99)00070-5.
  • Yumrutaş, R., Kunduz, M., & Kanoğlu, M. (2002). Exergy analysis of vapor compression refrigeration systems, Exergy, An Int. J., 2 (4), 266–272. doi: 10.1016/s1164-0235(02)00079-1.
  • Chopra, K., Sahni, V., & Mishra, R. S. (2015). Energy, exergy and sustainability analysis of two-stage vapour compression refrigeration system, J. Therm. Eng., 1 (4), 440–445. doi: 10.18186/jte.95418.
  • Anand, S., Gupta, A., & Tyagi, S. K. (2013). Simulation studies of refrigeration cycles: A review, Renew. Sustain. Energy Rev., 17, 260–277. doi: 10.1016/j.rser.2012.09.021.
  • Kabul, A., Kizilkan, Ö., & Yakut, A. K. (2008). Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a), Int. J. Energy Res., 32 (9), 824–836. doi: https://doi.org/10.1002/er.1396.
  • Kalaiselvam, S., & Saravanan, R. (2009). Exergy analysis of scroll compressors working with r22 , r407c , and r417a as refrigerant for hvac system, Thermal Science, 13 (1), 175–184. doi: 10.2298/TSCI0901175K.
  • Ahamed, J. U., Rahman, S., & Masjuki, H. H. (2010). Thermodynamic Performance Analysis of R-600 and R-600a as Refrigerant, Eng. e-Transaction, 5 (1), 11–18.
  • Ahamed, J. U., Saidur, R., & Masjuki, H. H. (2011). A review on exergy analysis of vapor compression refrigeration system, Renew. Sustain. Energy Rev., 15 (3), 1593–1600. doi: 10.1016/j.rser.2010.11.039.
  • Vincent, C. E., & Heun, M. K. (2006). Thermoeconomic Analysis & Design of Domestic Refrigeration Systems.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alaattin Metin Kaya 0000-0002-1940-8749

Publication Date June 30, 2021
Submission Date November 17, 2020
Acceptance Date February 3, 2021
Published in Issue Year 2021

Cite

APA Kaya, A. M. (2021). Çok Kademeli Buhar Sıkıştırmalı İdeal Soğutma Çevrimlerinde Farklı Soğutucu Akışkanlar Kullanarak Enerji ve Ekserji Analizi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 42-55. https://doi.org/10.35193/bseufbd.826970