Research Article
BibTex RIS Cite

The Influence of Changes in Principal and Alternate Buckling on the Critical Radius for a Spherical Nuclear Reactor

Year 2021, , 116 - 124, 30.06.2021
https://doi.org/10.35193/bseufbd.846417

Abstract

Commercial utilization of the nuclear energy becomes possible through the controlled fission reaction that occurs within the nuclear reactors. Controlled realization of the fission reaction depends on the neutron number staying constant. This is called criticality condition. In the simplest approximation, the neutrons that trigger the fission reaction can be separated into two groups as low energy thermal neutrons and high energy fast neutrons. This is named two group neutron diffusion theory. In this work, the reactor radius that satisfies the criticality for a given reactor composition has been determined by solving the two group criticality equation numerically. In this manner, the effects of changes in principal and alternate buckling on critical reactor radius have been elucidated in a detailed way.

References

  • Mitchell, C. (2016). Momentum is increasing towards a flexible electricity system based on renewables. Nature Energy, 1(2), 1-6.
  • Meckling, J., Sterner, T., & Wagner, G. (2017). Policy sequencing toward decarbonization. Nature Energy, 2(12), 918-922.
  • Bunn, M., & Heinonen, O. (2011). Preventing the next Fukushima. Science, 333(6049), 1580-1581.
  • Dai, J., Li, S., Bi, J., & Ma, Z. (2019). The health risk-benefit feasibility of nuclear power development. Journal of Cleaner Production, 224, 198-206.
  • Aboanber, A. E., & Nahla, A. A. (2006). Solution of two-dimensional space–time multigroup reactor kinetics equations by generalized Padé and cut-product approximations. Annals of Nuclear Energy, 33(3), 209-222.
  • Aboanber, A. E., & Nahla, A. A. (2007). Adaptive matrix formation (AMF) method of space–time multigroup reactor kinetics equations in multidimensional model. Annals of Nuclear Energy, 34(1-2), 103-119.
  • Quintero-Leyva, B. (2010). The multi-group integro-differential equations of the neutron diffusion kinetics. Solutions with the progressive polynomial approximation in multi-slab geometry. Annals of Nuclear Energy, 37(5), 766-770.
  • Maiani, M., & Montagnini, B. (1999). A boundary element-response matrix method for the multigroup neutron diffusion equations. Annals of Nuclear Energy, 26(15), 1341-1369.
  • Lewis, E. E., & Miller, W. F. (1984). Computational methods of neutron transport.
  • Marchuk, G. L., & Lebedev, V. I. (1986). Numerical methods in the theory of neutron transport.

Küresel Bir Nükleer Reaktör İçin Ana ve Alternatif Bükülmedeki Değişimlerin Kritik Yarıçapa Etkisi

Year 2021, , 116 - 124, 30.06.2021
https://doi.org/10.35193/bseufbd.846417

Abstract

Nükleer enerjinin ticari olarak kullanılması nükleer reaktörlerde gerçekleşen kontrollü fisyon reaksiyonu yoluyla mümkün olmaktadır. Fisyon reaksiyonun kontrollü gerçekleşmesi nötron sayısının sabit kalmasına bağlıdır. Buna kritiklik şartı denilmektedir. En basit yaklaşımda, fisyon reaksiyonunu tetikleyen nötronlar düşük enerjili termal nötronlar ve yüksek enerjili hızlı nötronlar olmak üzere enerjilerine göre iki ayrı gruba ayrılabilir. Buna iki gruplu nötron difüzyon teorisi adı verilir. Bu çalışmada, verilen bir reaktör kompozisyonu için kritikliği sağlayan reaktör yarıçapı iki gruplu kritiklik denklemini numerik olarak çözerek tespit edilmiştir. Bu yolla, küresel geometride ana ve alternatif bükülmedeki değişimlerin kritik reaktör yarıçapı üzerindeki etkileri detaylı bir şekilde irdelenmiştir.

References

  • Mitchell, C. (2016). Momentum is increasing towards a flexible electricity system based on renewables. Nature Energy, 1(2), 1-6.
  • Meckling, J., Sterner, T., & Wagner, G. (2017). Policy sequencing toward decarbonization. Nature Energy, 2(12), 918-922.
  • Bunn, M., & Heinonen, O. (2011). Preventing the next Fukushima. Science, 333(6049), 1580-1581.
  • Dai, J., Li, S., Bi, J., & Ma, Z. (2019). The health risk-benefit feasibility of nuclear power development. Journal of Cleaner Production, 224, 198-206.
  • Aboanber, A. E., & Nahla, A. A. (2006). Solution of two-dimensional space–time multigroup reactor kinetics equations by generalized Padé and cut-product approximations. Annals of Nuclear Energy, 33(3), 209-222.
  • Aboanber, A. E., & Nahla, A. A. (2007). Adaptive matrix formation (AMF) method of space–time multigroup reactor kinetics equations in multidimensional model. Annals of Nuclear Energy, 34(1-2), 103-119.
  • Quintero-Leyva, B. (2010). The multi-group integro-differential equations of the neutron diffusion kinetics. Solutions with the progressive polynomial approximation in multi-slab geometry. Annals of Nuclear Energy, 37(5), 766-770.
  • Maiani, M., & Montagnini, B. (1999). A boundary element-response matrix method for the multigroup neutron diffusion equations. Annals of Nuclear Energy, 26(15), 1341-1369.
  • Lewis, E. E., & Miller, W. F. (1984). Computational methods of neutron transport.
  • Marchuk, G. L., & Lebedev, V. I. (1986). Numerical methods in the theory of neutron transport.
There are 10 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ali İhsan Göker 0000-0001-8645-4617

Publication Date June 30, 2021
Submission Date December 24, 2020
Acceptance Date February 1, 2021
Published in Issue Year 2021

Cite

APA Göker, A. İ. (2021). Küresel Bir Nükleer Reaktör İçin Ana ve Alternatif Bükülmedeki Değişimlerin Kritik Yarıçapa Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 116-124. https://doi.org/10.35193/bseufbd.846417