Research Article
BibTex RIS Cite

Gaz Altı Ark Kaynağı İşleminde Proses Parametrelerinin Etkisinin İncelenmesi

Year 2017, Volume: 4 Issue: 1, 30 - 35, 28.06.2017

Abstract

Bu çalışmada, St37 malzeme çiftlerine gaz altı ark kaynağı yöntemiyle alın kaynağı ile birleştirme işlemi
gerçekleştirilmiştir. Deneysel çalışmalarda farklı proses parametreleri ile çalışılmıştır. Bu doğrultuda iki farklı
kalınlık değeri ve iki farklı ilerleme hızı ile kaynak işlemi gerçekleştirilmiştir. Deneysel çalışmalarda artan malzeme
kalınlığının çarpılmayı azalttığı, artan ilerleme hızının ise çarpılmayı arttırdığı tespit edilmiştir. Çalışmanın ikinci
adımında ise gerçekleştirilen proses nümerik olarak hesaplanmıştır. Bu adımda, her bir proses parametresi için
kaynak işlemi bilgisayar ortamında simüle edilmiş ve deneysel çalışmalarla karşılaştırılarak tahmin hassasiyeti
incelenmiştir. Simülasyonlar yine iki farklı kalınlık ve iki farklı ilerleme hızı olacak şekilde gerçekleştirilmiştir.
Nümerik hesaplamalarda Simufact Welding paket programı kullanılmıştır. Sonlu elemanlar analizleri sonuçları
incelendiğinde tahmin değerlerinin deneysel çalışmalarla uyumlu olduğu tespit edilmiştir.

References

  • Wen, S. W, Hilton P. and Farrugia, D.C.J., "Finite Element Modelling of a Submerged Arc Welding Process", Journal of Materials Processing Technology, vol.119, pp. 203-209, 2001.
  • Májlinger, K., Kalácska, E., Spena, P. R., "Gas metal arc welding of dissimilar AHSS sheets", Materials & Design, vol. 109, pp. 615-621, 2016.
  • Arif, N., Chung, H., "Alternating current-gas metal arc welding for application to thin sheets", Journal of Materials Processing Technology, vol. 214(9), pp. 1828-1837, 2014.
  • Feng, J., Li, L., Chen, Y., Lei, Z., Qin, H., Li, Y., "Effects of welding velocity on the impact behavior of droplets in gas metal arc welding", Journal of Materials Processing Technology, vol. 212(11), pp. 2163-2172, 2012.
  • Prasad, K., Dwivedi, D. K., "Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints", The international journal of advanced manufacturing technology, vol. 36(5), pp. 475-483, 2008.
  • Zhao, Y., Chung, H., "Numerical simulation of droplet transfer behavior in variable polarity gas metal arc welding", International Journal of Heat and Mass Transfer, vol. 111, pp. 1129-1141, 2017.
  • Murphy, A. B., Nguyen, V., Feng, Y., Thomas, D. G., Gunasegaram, D., "A desktop computer model of the arc, weld pool and workpiece in metal inert gas welding", Applied Mathematical Modelling, vol. 44, pp. 91-106, 2017.
  • Srivastava, S., Garg, R. K., "Process parameter optimization of gas metal arc welding on IS: 2062 mild steel using response surface methodology", Journal of Manufacturing Processes, vol. 25, pp. 296-305, 2017.
  • Yadav, A., Ghosh, A., Kumar, A., "Experimental and Numerical Study of Thermal Field and Weld Bead Characteristics in Submerged Arc Welded Plate", Journal of Materials Processing Technology, vol. 248, pp. 262-274, 2017.
  • Jia, X., Xu, J., Liu, Z., Huang, S., Fan, Y., Sun, Z., "A new method to estimate heat source parameters in gas metal arc welding simulation process", Fusion Engineering and Design, vol. 89(1), pp. 40-48, 2014.
  • Ramazani, A., Li, Y., Mukherjee, K., Prahl, U., Bleck, W., Abdurakhmanov, A., Schlese, M., Reisgen, U., "Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding", Computational Materials Science, vol. 68, pp. 107-116, 2013.
  • Heinze, C., Schwenk, C., Rethmeier, M., "Numerical calculation of residual stress development of multi-pass gas metal arc welding", Journal of Constructional Steel Research, vol. 72, pp. 12-19, 2012.
  • Tülbentçi, K., "MIG-MAG Eriyen Elektrod İle Gazaltı Kaynağı", Gedik Eğitim Vakfı Kaynak Teknolojisi Eğitim Araştırma ve Muayene Enstitüsü, 1990.
  • Simufact.Welding User Manual, Material/Library, 2014.

Investigation of Process Parameters' Effects at Distortion on Gas Metal Arc Welding

Year 2017, Volume: 4 Issue: 1, 30 - 35, 28.06.2017

Abstract

In this study, butt welding of St37 material is performed using gas metal arc welding. Different process
parameters are used in experimental studies by means of two different thicknesses, and two different welding
velocities. As a result of experimental studies, decreasing distortion values are determined with increasing material
thickness, and increasing distortion values are obtained with increasing welding velocity. At the second stage of the
study, numerical calculation of the process is performed. In this stage, welding process is simulated at computer
enviorenment using experimental process parameters. Numerical calculations are performed using Simufact Welding
software. Prediction results with finite element analysis are determined compatible with the experimental results.

References

  • Wen, S. W, Hilton P. and Farrugia, D.C.J., "Finite Element Modelling of a Submerged Arc Welding Process", Journal of Materials Processing Technology, vol.119, pp. 203-209, 2001.
  • Májlinger, K., Kalácska, E., Spena, P. R., "Gas metal arc welding of dissimilar AHSS sheets", Materials & Design, vol. 109, pp. 615-621, 2016.
  • Arif, N., Chung, H., "Alternating current-gas metal arc welding for application to thin sheets", Journal of Materials Processing Technology, vol. 214(9), pp. 1828-1837, 2014.
  • Feng, J., Li, L., Chen, Y., Lei, Z., Qin, H., Li, Y., "Effects of welding velocity on the impact behavior of droplets in gas metal arc welding", Journal of Materials Processing Technology, vol. 212(11), pp. 2163-2172, 2012.
  • Prasad, K., Dwivedi, D. K., "Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints", The international journal of advanced manufacturing technology, vol. 36(5), pp. 475-483, 2008.
  • Zhao, Y., Chung, H., "Numerical simulation of droplet transfer behavior in variable polarity gas metal arc welding", International Journal of Heat and Mass Transfer, vol. 111, pp. 1129-1141, 2017.
  • Murphy, A. B., Nguyen, V., Feng, Y., Thomas, D. G., Gunasegaram, D., "A desktop computer model of the arc, weld pool and workpiece in metal inert gas welding", Applied Mathematical Modelling, vol. 44, pp. 91-106, 2017.
  • Srivastava, S., Garg, R. K., "Process parameter optimization of gas metal arc welding on IS: 2062 mild steel using response surface methodology", Journal of Manufacturing Processes, vol. 25, pp. 296-305, 2017.
  • Yadav, A., Ghosh, A., Kumar, A., "Experimental and Numerical Study of Thermal Field and Weld Bead Characteristics in Submerged Arc Welded Plate", Journal of Materials Processing Technology, vol. 248, pp. 262-274, 2017.
  • Jia, X., Xu, J., Liu, Z., Huang, S., Fan, Y., Sun, Z., "A new method to estimate heat source parameters in gas metal arc welding simulation process", Fusion Engineering and Design, vol. 89(1), pp. 40-48, 2014.
  • Ramazani, A., Li, Y., Mukherjee, K., Prahl, U., Bleck, W., Abdurakhmanov, A., Schlese, M., Reisgen, U., "Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding", Computational Materials Science, vol. 68, pp. 107-116, 2013.
  • Heinze, C., Schwenk, C., Rethmeier, M., "Numerical calculation of residual stress development of multi-pass gas metal arc welding", Journal of Constructional Steel Research, vol. 72, pp. 12-19, 2012.
  • Tülbentçi, K., "MIG-MAG Eriyen Elektrod İle Gazaltı Kaynağı", Gedik Eğitim Vakfı Kaynak Teknolojisi Eğitim Araştırma ve Muayene Enstitüsü, 1990.
  • Simufact.Welding User Manual, Material/Library, 2014.
There are 14 citations in total.

Details

Journal Section Articles
Authors

Ramazan Erol This is me

Emre Esener

Publication Date June 28, 2017
Submission Date November 20, 2017
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

APA Erol, R., & Esener, E. (2017). Gaz Altı Ark Kaynağı İşleminde Proses Parametrelerinin Etkisinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 4(1), 30-35.