Letter to Editor
PDF EndNote BibTex RIS Cite

Nötron Taşınma Denkleminin İki Boyutta Sonlu Farklar Yöntemi Yoluyla Çözülmesi

Year 2018, Volume 5, Issue 1, 8 - 17, 28.06.2018

Abstract

Nükleer reaktör çekirdeklerinde fisyon reaksiyonunu tetikleyen nötronların dağılımının tespit edilebilmesi nükleer kazaları engellemek için kritik önem taşımaktadır. Nötronların dağılımı ise nötron taşınma denklemi yoluyla tayin edilmektedir. Bu çalışmada,  nötron taşınma denklemini orijinde yer alan Gauss ve Lorentz biçimli dış nötron kaynaklarını kullanarak 2 boyutlu bir çerçevede sonlu farklar yöntemiyle değişik emilme kesit alanları için çözdük. Elde edilen nötron akı değerlerinin reaktör çekirdeği içindeki dağılımının profilini gösterdik. Elde edilen sonuçlar ışığında, reaktörün kritik seviyede kalması için gerekli şartları tartıştık.

References

  • Mitchell C., "Momentum is increasing towards a flexible electricity system based on renewables", Nature Energy, vol. 1, pp. 15030, 2016.
  • Meckling J., Sterner T. ve Wagner G., "Policy sequencing towards decarbonization", Nature Energy, vol. 2, pp. 918-922, 2017.
  • Qvist, S. A. ve Brook B. W., "Environmental and health impacts of a policy to phase out nuclear power in Sweden", Energy Policy, vol. 84, pp. 1-10, 2015.
  • Lewis E. E. ve Miller Jr. W. F., Computational methods of neutron transport, John Wiley&Sons, New York, 1984.
  • Spanier J ve Gelbard E. M., Monte carlo principles and neutron transport problems, Dover, 2008.
  • Mendelson M., "Monte Carlo criticality calculations for thermal reactors", Nucl Science and Engineering, vol. 32, pp. 319-331, 1968.
  • Marchuk G. ve Lebedev V., Numerical methods in the theory of neutron transport, Harwood Academic, new York, 1986.
  • Larsen E. W. ve Miller Jr. W. F., "Convergence rates of spatial difference equations for the discrete-ordinates neutron transport equations in slab geometry", Nucl Science and Engineering, vol. 73, pp. 76-83, 1980.
  • Fletcher J. K., "A solution of the neutron transport equation using spherical harmonics", J. Phys. A: Math Gen, vol. 16, pp. 2827, 1983.
  • Mazumdar T. ve Degweker S. B., "Solution of neutron transport equation by method of characteristics", Annals of Nuclear Energy, vol. 17, pp.522-535, 2015.
  • Larsen E. W., "Neutron transport and diffusion in inhomogeneous media", J of Math Phys, vol. 16, pp. 1421, 1975.
  • Tamrabet A. ve Kadem A., "An iterative method for solving neutron transport equation in 2-D plane geometry", Phys Procedia, vol. 21, pp. 198-204, 2011.

Year 2018, Volume 5, Issue 1, 8 - 17, 28.06.2018

Abstract

References

  • Mitchell C., "Momentum is increasing towards a flexible electricity system based on renewables", Nature Energy, vol. 1, pp. 15030, 2016.
  • Meckling J., Sterner T. ve Wagner G., "Policy sequencing towards decarbonization", Nature Energy, vol. 2, pp. 918-922, 2017.
  • Qvist, S. A. ve Brook B. W., "Environmental and health impacts of a policy to phase out nuclear power in Sweden", Energy Policy, vol. 84, pp. 1-10, 2015.
  • Lewis E. E. ve Miller Jr. W. F., Computational methods of neutron transport, John Wiley&Sons, New York, 1984.
  • Spanier J ve Gelbard E. M., Monte carlo principles and neutron transport problems, Dover, 2008.
  • Mendelson M., "Monte Carlo criticality calculations for thermal reactors", Nucl Science and Engineering, vol. 32, pp. 319-331, 1968.
  • Marchuk G. ve Lebedev V., Numerical methods in the theory of neutron transport, Harwood Academic, new York, 1986.
  • Larsen E. W. ve Miller Jr. W. F., "Convergence rates of spatial difference equations for the discrete-ordinates neutron transport equations in slab geometry", Nucl Science and Engineering, vol. 73, pp. 76-83, 1980.
  • Fletcher J. K., "A solution of the neutron transport equation using spherical harmonics", J. Phys. A: Math Gen, vol. 16, pp. 2827, 1983.
  • Mazumdar T. ve Degweker S. B., "Solution of neutron transport equation by method of characteristics", Annals of Nuclear Energy, vol. 17, pp.522-535, 2015.
  • Larsen E. W., "Neutron transport and diffusion in inhomogeneous media", J of Math Phys, vol. 16, pp. 1421, 1975.
  • Tamrabet A. ve Kadem A., "An iterative method for solving neutron transport equation in 2-D plane geometry", Phys Procedia, vol. 21, pp. 198-204, 2011.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ali İhsan GÖKER> (Primary Author)
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
0000-0001-8645-4617
Türkiye


Emre ERGİN This is me

Publication Date June 28, 2018
Application Date February 9, 2018
Acceptance Date March 6, 2018
Published in Issue Year 2018, Volume 5, Issue 1

Cite

APA Göker, A. İ. & Ergin, E. (2018). Nötron Taşınma Denkleminin İki Boyutta Sonlu Farklar Yöntemi Yoluyla Çözülmesi . Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 5 (1) , 8-17 . Retrieved from https://dergipark.org.tr/en/pub/bseufbd/issue/37775/392876