Research Article
BibTex RIS Cite

Ti (II) Oxide Nanoparticle Loaded GMA-co-EGDMA Microspheres: Photocatalytic Removal of Textile Dyes from Aqueous Medium

Year 2019, Volume: 6, 12 - 20, 30.09.2019
https://doi.org/10.35193/bseufbd.559651

Abstract



It is known that photocatalytic techniques have advantages over other
conventional treatment techniques. In this study, nanoparticle Ti (II) oxide (~
10 nm) and hydrogel polymer based heterogeneous catalysts were produced to
maximize photo-catalytic activity. The performance of the obtained
photo-catalytic material was evaluated in the process of removing reactive
textile dyes from aqueous media. When the Ti (II) oxide nanoparticles were used
directly for representative reactive textile dyes, alizarin red S, Congo red,
methylene orange and acid blue (20 ppm dye, 10 ppm catalyst, 60 minutes and 25
° C) which are extremely hazardous for human and environmental health even at
low concentrations, up to 92.5% decomposition was achieved, while 71.2%
decomposition was obtained with Ti (II) oxide nanoparticle embedded
microparticles. However, given the advantages of removing the catalyst, the
indicated performance reduction is not critical. By scaling the reaction
conditions, high removal performance can be achieved.




References

  • Borker, P. and A.V. Salker, Photocatalytic degradation of textile azo dye over Ce1−xSnxO2 series. Materials Science and Engineering: B, 2006. 133(1): p. 55-60.
  • Konstantinou, I. and T. Albanis, TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Vol. 49. 2004. 1-14.
  • H. Ehrampoosh, M., et al., Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO 2/UV-C photocatalytic process. Vol. 8. 2011. 35-40.
  • Prado, A.G.S., et al., Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental, 2008. 82(3): p. 219-224.
  • Akpan, U.G. and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater, 2009. 170(2-3): p. 520-9.
  • Malato, S., et al., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009. 147(1): p. 1-59.
  • Sun, Z., et al., Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 149(1): p. 169-174.
  • Uğurlu, M., Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 2009. 119(1): p. 276-283.
  • Kun, R., K. Mogyorósi, and I. Dékány, Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Applied Clay Science, 2006. 32(1): p. 99-110.
  • Fukahori, S., et al., Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol, 2003. 37(5): p. 1048-51.
  • Chong, M.N., et al., Recent developments in photocatalytic water treatment technology: a review. Water Res, 2010. 44(10): p. 2997-3027.
  • Choi, H., E. Stathatos, and D.D. Dionysiou, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 2007. 202(1): p. 199-206.
  • Molinari, R., et al., Photocatalytic degradation of dyes by using a membrane reactor. Chemical Engineering and Processing: Process Intensification, 2004. 43(9): p. 1103-1114.
  • Yu, Y., et al., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 2005. 289(2): p. 186-196.
  • Vinodgopal, K., D.E. Wynkoop, and P.V. Kamat, Environmental Photochemistry on Semiconductor Surfaces:  Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environmental Science & Technology, 1996. 30(5): p. 1660-1666.
  • Ni, M., et al., A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Vol. 11. 2007. 401-425.
  • Litter, M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999. 23(2): p. 89-114.
  • Gelover, S., P. Mondragón, and A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 165(1): p. 241-246.
  • Carpio, E., et al., Photocatalytic degradation of phenol using TiO 2 nanocrystals supported on activated carbon. Vol. 228. 2005. 293-298.
  • Shironita, S., et al., Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Applied Surface Science, 2008. 254(23): p. 7604-7607.
  • Damodar, R.A. and T. Swaminathan, Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chemical Engineering Journal, 2008. 144(1): p. 59-66.
  • Shan, A.Y., T.I.M. Ghazi, and S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010. 389(1): p. 1-8.
  • Li, Y. and S.-J. Kim, Synthesis and Characterization of Nano titania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption Capability. The Journal of Physical Chemistry B, 2005. 109(25): p. 12309-12315.
  • Fabiyi, M. and R. L Skelton, Photocatalytic Mineralisation of Methylene Blue using Buoyant TiO2-Coated Polystyrene Beads. Vol. 132. 2000. 121-128.
  • Mahshid, S., M. Askari, and M. Sasani Ghamsari, Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. Vol. 189. 2007. 296-300.
  • Xiong, Z., et al., Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A, 2014. 2(24): p. 9291-9297.

Ti(II) Oksit Nanoparçacık Yüklenmiş GMA-co-EGDMA Mikroküreler: Tekstil Boyalarının Sulu Ortamdan Fotokatalitik Giderimi

Year 2019, Volume: 6, 12 - 20, 30.09.2019
https://doi.org/10.35193/bseufbd.559651

Abstract

Atık suların arıtılmasında,
özellikle tekstil boyalarının sulu ortamdan uzaklaştırılmasında, fotokatalitik
teknikler birçok avantaja sahiptir. Bu çalışmada, fotokatalitik aktiviteyi en
yüksek seviyeye çıkarmak için, nanoparçacık Ti (II) oksit (~10 nm) ve hidrojel
polimer esaslı heterojen katalizörler üretilmiştir. Elde edilen foto-katalitik
malzemenin performansı, sulu ortamlardan reaktif tekstil boyalarının
giderilmesi işleminde değerlendirilmiştir. Düşük miktarlarda bile çevre ve
insan sağlığına etkisi olan reaktif tekstil boyaları arasından model olarak
seçilen alizarin kırmızısı S, Kongo kırmızısı, metilen turuncusu ve asit mavisi
için Ti(II) oksit nanoparçacıklar doğrudan kullanıldığında (20 ppm boya, 10 ppm
katalizör, 60 dakika ve 25°C’ta) %92.5’a varan bozunma elde edilirken,
mikrokürelere yüklenmiş nanoparçacıklar ile %71.2 bozunma elde edilmiştir.
Ancak, katalizörün ortamdan alınması dikkate alındığında, belirtilen performans
azalması önemli değildir. Reaksiyon ortamının ölçeklendirilmesi ile yüksek
giderim performansı elde edilebilir.


References

  • Borker, P. and A.V. Salker, Photocatalytic degradation of textile azo dye over Ce1−xSnxO2 series. Materials Science and Engineering: B, 2006. 133(1): p. 55-60.
  • Konstantinou, I. and T. Albanis, TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Vol. 49. 2004. 1-14.
  • H. Ehrampoosh, M., et al., Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO 2/UV-C photocatalytic process. Vol. 8. 2011. 35-40.
  • Prado, A.G.S., et al., Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Applied Catalysis B: Environmental, 2008. 82(3): p. 219-224.
  • Akpan, U.G. and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater, 2009. 170(2-3): p. 520-9.
  • Malato, S., et al., Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009. 147(1): p. 1-59.
  • Sun, Z., et al., Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 149(1): p. 169-174.
  • Uğurlu, M., Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 2009. 119(1): p. 276-283.
  • Kun, R., K. Mogyorósi, and I. Dékány, Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Applied Clay Science, 2006. 32(1): p. 99-110.
  • Fukahori, S., et al., Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ Sci Technol, 2003. 37(5): p. 1048-51.
  • Chong, M.N., et al., Recent developments in photocatalytic water treatment technology: a review. Water Res, 2010. 44(10): p. 2997-3027.
  • Choi, H., E. Stathatos, and D.D. Dionysiou, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 2007. 202(1): p. 199-206.
  • Molinari, R., et al., Photocatalytic degradation of dyes by using a membrane reactor. Chemical Engineering and Processing: Process Intensification, 2004. 43(9): p. 1103-1114.
  • Yu, Y., et al., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis A: General, 2005. 289(2): p. 186-196.
  • Vinodgopal, K., D.E. Wynkoop, and P.V. Kamat, Environmental Photochemistry on Semiconductor Surfaces:  Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO2 Particles Using Visible Light. Environmental Science & Technology, 1996. 30(5): p. 1660-1666.
  • Ni, M., et al., A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Vol. 11. 2007. 401-425.
  • Litter, M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999. 23(2): p. 89-114.
  • Gelover, S., P. Mondragón, and A. Jiménez, Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 165(1): p. 241-246.
  • Carpio, E., et al., Photocatalytic degradation of phenol using TiO 2 nanocrystals supported on activated carbon. Vol. 228. 2005. 293-298.
  • Shironita, S., et al., Preparation of nano-sized platinum metal catalyst using photo-assisted deposition method on mesoporous silica including single-site photocatalyst. Applied Surface Science, 2008. 254(23): p. 7604-7607.
  • Damodar, R.A. and T. Swaminathan, Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chemical Engineering Journal, 2008. 144(1): p. 59-66.
  • Shan, A.Y., T.I.M. Ghazi, and S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 2010. 389(1): p. 1-8.
  • Li, Y. and S.-J. Kim, Synthesis and Characterization of Nano titania Particles Embedded in Mesoporous Silica with Both High Photocatalytic Activity and Adsorption Capability. The Journal of Physical Chemistry B, 2005. 109(25): p. 12309-12315.
  • Fabiyi, M. and R. L Skelton, Photocatalytic Mineralisation of Methylene Blue using Buoyant TiO2-Coated Polystyrene Beads. Vol. 132. 2000. 121-128.
  • Mahshid, S., M. Askari, and M. Sasani Ghamsari, Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. Vol. 189. 2007. 296-300.
  • Xiong, Z., et al., Synthesis of TiO2 with controllable ratio of anatase to rutile. Journal of Materials Chemistry A, 2014. 2(24): p. 9291-9297.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Oğuzhan Çağlayan

Publication Date September 30, 2019
Submission Date May 1, 2019
Acceptance Date August 29, 2019
Published in Issue Year 2019 Volume: 6

Cite

APA Çağlayan, M. O. (2019). Ti(II) Oksit Nanoparçacık Yüklenmiş GMA-co-EGDMA Mikroküreler: Tekstil Boyalarının Sulu Ortamdan Fotokatalitik Giderimi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 12-20. https://doi.org/10.35193/bseufbd.559651