Research Article
BibTex RIS Cite

Manyetize Edilmiş Suyun, Reaktif Pudra Betonların Eğilme ve Basınç Dayanımı Üzerindeki Etkisi

Year 2019, Volume: 6, 21 - 29, 30.09.2019
https://doi.org/10.35193/bseufbd.559662

Abstract

Bu çalışmanın amacı; manyetize edilmiş suyun,
lifli ve lifsiz reaktif pudra betonların (RPB) basınç ve eğilme dayanımı
üzerindeki etkisini incelemektir. Farklı manyetik alan şiddetleri manyetik su
üretimi için kullanılabilmektedir. Bu çalışmada; 0.8-1 ve 1.2 Tesla
şiddetindeki üç farklı manyetik alan şiddeti seçilmiştir. Manyetik su üretimi
için farklı manyetik alan şiddetlerinde bekletme süresi 20 dakika olarak sabit
alınmıştır. Elde edilen sonuçlar incelendiğinde; normal su kullanımı yerine
manyetik su kullanımı, 7 ve 28 günlük basınç ve eğilme dayanımlarının artmasını
sağladığı görülmüştür. Ayrıca manyetize edilmiş suyun, RPB’lerin basınç ve
eğilme dayanımına olumlu etkisi olduğu ve dayanımı artırmak için en verimli
manyetik alan şiddetinin 1 Tesla olduğu tespit edilmiştir.



References

  • [1] Afshin, H., Gholizadeh, M., & Khorshidi, N. (2010). Improving mechanical properties of high strength concrete by magnetic water technology. Scientia Iranica, 17.
  • [2] Bache, H. H. (1981). Densified cement/ultra-fine particle-based materials: Aalborg Portland Aalborg, Denmark.
  • [3] Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J., & Aitcin, P.-C. (1997). Mechanical properties and durability of two industrial reactive powder concretes. Materials Journal, 94(4), 286-290.
  • [4] Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (reactive powder concrete). Cement and Concrete Research, 25(7), 1491-1500.
  • [5] Choi, M. S., Kim, Y. S., Kim, J. H., Kim, J.-S., & Kwon, S. H. (2014). Effects of an externally imposed electromagnetic field on the formation of a lubrication layer in concrete pumping. Construction and Building Materials, 61, 18-23.
  • [6] Feylessoufi, A., Crespin, M., Dion, P., Bergaya, F., Van Damme, H., & Richard, P. (1997). Controlled rate thermal treatment of reactive powder concretes. Advanced cement based materials, 6(1), 21-27.
  • [7] Fu, W., & Wang, Z. (1994). The new technology of concrete engineering. Beijing: The Publishing House of Chinese Architectural Industry, 56-59. [8] Karabulut, A. Ş. (2006). Reaktif Pudra Betonunun Özelliklerinin Mineral Katkılarla Geliştirilmesi. (Yüksek Lisans Tezi), Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • [9] Mohabbi, M., & Varolgüneş, S. (2019). Farklı Kür Koşullarının Reaktif Pudra Betonların Mekanik Özelliklerine Etkisi. Dicle Üniversitesi Mühendislik Fakültesi Dergisi (DUMF), baskı aşamasında.
  • [10] Rahgozar, M. A., & Zamani, M. (2015). Performance and Properties of Concrete with Magnetic Water.
  • [11] Reddy, B. S. K., Ghorpade, V. G., & Rao, H. S. (2013). Effect of magnetic field exposure time on workability and compressive strength of magnetic water concrete. Int J Adv Engg Tech/IV/III/July-Sept, 120, 122.
  • [12] Reddy, V. S., Kumar, A. K., & Sumanth, A. (2017). Effect of Magnetic Field Treated Water on Fresh and Hardened Properties of Concrete. environments, 3, 4.
  • [13] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511.
  • [14] Roux, N., Andrade, C., & Sanjuan, M. (1996). Experimental study of durability of reactive powder concretes. Journal of Materials in Civil Engineering, 8(1), 1-6.
  • [15] Roy, D. M., Gouda, G., & Bobrowsky, A. (1972). Very high strength cement pastes prepared by hot pressing and other high pressure techniques. Cement and Concrete Research, 2(3), 349-366.
  • [16] Su, N., Wu, Y.-H., & Mar, C.-Y. (2000). Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 30(4), 599-605.
  • [17] Toledo, E. J., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. Journal of Molecular Structure, 888(1-3), 409-415.
  • [18] Xiao-Feng, P., & Xing-Chun, Z. (2013). The Magnetization of Water Arising From a Magnetic-Field and Its Applications in Concrete Industry. Institute of Life Science and Technology, University Science and Technology, 3, 1541-1552.
  • [19] Yudenfreund, M., Odler, I., & Brunauer, S. (1972). Hardened portland cement pastes of low porosity I. Materials and experimental methods. Cement and Concrete Research, 2(3), 313-330.

The Effect of Magnetized Water on Compressive and Flexural Strength of Reactive Powder Concretes

Year 2019, Volume: 6, 21 - 29, 30.09.2019
https://doi.org/10.35193/bseufbd.559662

Abstract



The aim of this study is to
investigate the effect of magnetized water on compressive and flexural strength
of reactive powder concrete (RPC). Different magnetic field intensities can be
used for magnetic water production. In this study, the effects of three
different magnetic field intensities i.e. 0.8-1 and 1.2 Tesla have been
assessed on compressive and flexural strength of RPC. The magnetic water used for
manufacturing of the specimens was exposed to magnetic fields for 20 minutes in
all mixes. When the results are assessed, it can be concluded that using of
magnetic water instead of normal water causes increase in 7 and 28 days
compressive and flexural strength. In addition, it has been determined that the
most efficient magnetic field strength is 1 Tesla to increase the strength.




References

  • [1] Afshin, H., Gholizadeh, M., & Khorshidi, N. (2010). Improving mechanical properties of high strength concrete by magnetic water technology. Scientia Iranica, 17.
  • [2] Bache, H. H. (1981). Densified cement/ultra-fine particle-based materials: Aalborg Portland Aalborg, Denmark.
  • [3] Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J., & Aitcin, P.-C. (1997). Mechanical properties and durability of two industrial reactive powder concretes. Materials Journal, 94(4), 286-290.
  • [4] Cheyrezy, M., Maret, V., & Frouin, L. (1995). Microstructural analysis of RPC (reactive powder concrete). Cement and Concrete Research, 25(7), 1491-1500.
  • [5] Choi, M. S., Kim, Y. S., Kim, J. H., Kim, J.-S., & Kwon, S. H. (2014). Effects of an externally imposed electromagnetic field on the formation of a lubrication layer in concrete pumping. Construction and Building Materials, 61, 18-23.
  • [6] Feylessoufi, A., Crespin, M., Dion, P., Bergaya, F., Van Damme, H., & Richard, P. (1997). Controlled rate thermal treatment of reactive powder concretes. Advanced cement based materials, 6(1), 21-27.
  • [7] Fu, W., & Wang, Z. (1994). The new technology of concrete engineering. Beijing: The Publishing House of Chinese Architectural Industry, 56-59. [8] Karabulut, A. Ş. (2006). Reaktif Pudra Betonunun Özelliklerinin Mineral Katkılarla Geliştirilmesi. (Yüksek Lisans Tezi), Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • [9] Mohabbi, M., & Varolgüneş, S. (2019). Farklı Kür Koşullarının Reaktif Pudra Betonların Mekanik Özelliklerine Etkisi. Dicle Üniversitesi Mühendislik Fakültesi Dergisi (DUMF), baskı aşamasında.
  • [10] Rahgozar, M. A., & Zamani, M. (2015). Performance and Properties of Concrete with Magnetic Water.
  • [11] Reddy, B. S. K., Ghorpade, V. G., & Rao, H. S. (2013). Effect of magnetic field exposure time on workability and compressive strength of magnetic water concrete. Int J Adv Engg Tech/IV/III/July-Sept, 120, 122.
  • [12] Reddy, V. S., Kumar, A. K., & Sumanth, A. (2017). Effect of Magnetic Field Treated Water on Fresh and Hardened Properties of Concrete. environments, 3, 4.
  • [13] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511.
  • [14] Roux, N., Andrade, C., & Sanjuan, M. (1996). Experimental study of durability of reactive powder concretes. Journal of Materials in Civil Engineering, 8(1), 1-6.
  • [15] Roy, D. M., Gouda, G., & Bobrowsky, A. (1972). Very high strength cement pastes prepared by hot pressing and other high pressure techniques. Cement and Concrete Research, 2(3), 349-366.
  • [16] Su, N., Wu, Y.-H., & Mar, C.-Y. (2000). Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 30(4), 599-605.
  • [17] Toledo, E. J., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. Journal of Molecular Structure, 888(1-3), 409-415.
  • [18] Xiao-Feng, P., & Xing-Chun, Z. (2013). The Magnetization of Water Arising From a Magnetic-Field and Its Applications in Concrete Industry. Institute of Life Science and Technology, University Science and Technology, 3, 1541-1552.
  • [19] Yudenfreund, M., Odler, I., & Brunauer, S. (1972). Hardened portland cement pastes of low porosity I. Materials and experimental methods. Cement and Concrete Research, 2(3), 313-330.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehrzad Mohabbı 0000-0001-8584-1658

Sadık Varolgüneş 0000-0001-9580-9889

Publication Date September 30, 2019
Submission Date May 1, 2019
Acceptance Date July 24, 2019
Published in Issue Year 2019 Volume: 6

Cite

APA Mohabbı, M., & Varolgüneş, S. (2019). Manyetize Edilmiş Suyun, Reaktif Pudra Betonların Eğilme ve Basınç Dayanımı Üzerindeki Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 21-29. https://doi.org/10.35193/bseufbd.559662