Research Article
BibTex RIS Cite

Null Cartan Helices in Lorentzian 3-Space: An Approximation

Year 2019, Volume: 6 Issue: 2, 369 - 383, 26.12.2019
https://doi.org/10.35193/bseufbd.598439

Abstract

In this work, we investigate the null Cartan helices in
Lorentzian 3-space. We derive the helices with the constant timelike, spacelike
and lightlike Killing axis in Lorentzian 3-space. Then, we calculate the Bishop
curvatures of the null Cartan helix and obtain the explicit parametric
equations of these curves by using the Bishop curvatures. Finally, we present
various related examples and draw their images using the Mathematica
.

References

  • Barros, M., & Ferrandez, A. (2009). A conformal variational approach for helices in nature. J. Math. Phys. 50(10), 103529.
  • Barros, M., Ferrandez, A., Lucas, P., & Merono, M.A. (2001). General helices in the three-dimensional Lorentzian space forms. Rocky Mt. J. Math. 31(2), 373-388.
  • Barros, M. (1997). General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503- 1509.
  • A. Bejancu, A. (1994). Lightlike curves in Lorentz manifolds Publ. Math. Debrecen, 44 (1.2), 145-155.
  • L. R. Bishop, L.R. (1975). There is more than one way to frame a curve, Amer. Math. Monthly. 82(3), 246-251.
  • W.B. Bonnor, W.B. (1969). Null curves in a Minkowski space-time, Tensor (N.S.), 20 (1969), 229-242.
  • Choi, J-H, Kim, Y-H. (2013). Note on null helices in E31, Bull. Korean Math. Soc., 50 (3) (2013), 885-899.
  • A.C. Çöken, A.C., Ü. Çiftçi, Ü. (2005). On the Cartan curvatures of a null curve in Minkowski Spacetime, Geom. Dedicata, 114, 71-78.
  • Duggal, K.L., Jin, D.H. (2007). Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Singapore.
  • Duggal, K.L., Bejancu, A. (1996). Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications Kluwer Academic Publishers, Dordrecht.
  • Ferrández, A., Giménez, A., P. Lucas, P. (2002). Null generalized helices in Lorentz.Minkowski spaces Phys. A, 35 (39), 8243-8251.
  • Ferrández, A. Giménez, A., Lucas, P. (2002). Geometrical particles models on 3D null curves, Physics Letters B, 543(3-4), 311-317.
  • Ferrández, A. Giménez, A., Lucas, P. (2007). Relativistic particles and the geometry of 4D null curves, Journal of Geometry and Physics, 57(10), 2124-2135.
  • Giménez, A. (2010). Relativistic particles along null curves in 3D Lorentzian space forms, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20(9), 2851-2859.
  • Grbović, M., Ne.ović, E. (2018). On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J Math Anal and Appl, 461, 219-233.
  • Hughston, L.P., Shaw, W.T. (1987). Real classical strings., Proc. Roy. Soc. London Ser. A, 414, 415-422.
  • Hughston, L.P., Shaw, W.T. (1987). Classical strings in ten dimensions., Proc. Roy. Soc. London. Ser. A, 414, 423-431.
  • Hughston, L.P., Shaw, W.T. (1988). Constraint-free analysis of relativistic strings., Classical Quantum Gravity, 5, 69-72.
  • Shaw, W.T. Twistors and strings., In Mathematics and General Relativity (Santa Cruz, CA, 1986), pages 337.363. Amer. Math. Soc., RI, 1988.
  • Z. Özdemir, Z. (2019). Magnetic Trajectories on Lightlike Surfaces, Submitted to the journal.
  • Şahin, B., Kiliç, E., Güneş, R. (2001). Null helices in R31. Differ. Geom. Dyn. Syst., 3 (2) (2001), 31-36.
  • Sakaki, M. (2010). Notes on null curves in Minkowski spaces, Turkish J. Math., 34 (3), 417-424.
  • Özdemir, M., Ergin, A.A. (2008). Parallel frame of non-lightlike curves, Missouri J. Math. Sci. 20(2), (2008), 127.137.
  • H. Urbantke, H. On Pinl's representation of null curves in n dimensions., In Relativity Today (Budapest, 1987), pages 34.36. World Sci. Publ., Teaneck, New York, 1988.
  • Yampolsky, A., Oparity, A. (2019). Generalized helices in three-dimensional Lie groups, Turk J Math 43, 1447 – 1455.
Year 2019, Volume: 6 Issue: 2, 369 - 383, 26.12.2019
https://doi.org/10.35193/bseufbd.598439

Abstract

References

  • Barros, M., & Ferrandez, A. (2009). A conformal variational approach for helices in nature. J. Math. Phys. 50(10), 103529.
  • Barros, M., Ferrandez, A., Lucas, P., & Merono, M.A. (2001). General helices in the three-dimensional Lorentzian space forms. Rocky Mt. J. Math. 31(2), 373-388.
  • Barros, M. (1997). General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503- 1509.
  • A. Bejancu, A. (1994). Lightlike curves in Lorentz manifolds Publ. Math. Debrecen, 44 (1.2), 145-155.
  • L. R. Bishop, L.R. (1975). There is more than one way to frame a curve, Amer. Math. Monthly. 82(3), 246-251.
  • W.B. Bonnor, W.B. (1969). Null curves in a Minkowski space-time, Tensor (N.S.), 20 (1969), 229-242.
  • Choi, J-H, Kim, Y-H. (2013). Note on null helices in E31, Bull. Korean Math. Soc., 50 (3) (2013), 885-899.
  • A.C. Çöken, A.C., Ü. Çiftçi, Ü. (2005). On the Cartan curvatures of a null curve in Minkowski Spacetime, Geom. Dedicata, 114, 71-78.
  • Duggal, K.L., Jin, D.H. (2007). Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Singapore.
  • Duggal, K.L., Bejancu, A. (1996). Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications Kluwer Academic Publishers, Dordrecht.
  • Ferrández, A., Giménez, A., P. Lucas, P. (2002). Null generalized helices in Lorentz.Minkowski spaces Phys. A, 35 (39), 8243-8251.
  • Ferrández, A. Giménez, A., Lucas, P. (2002). Geometrical particles models on 3D null curves, Physics Letters B, 543(3-4), 311-317.
  • Ferrández, A. Giménez, A., Lucas, P. (2007). Relativistic particles and the geometry of 4D null curves, Journal of Geometry and Physics, 57(10), 2124-2135.
  • Giménez, A. (2010). Relativistic particles along null curves in 3D Lorentzian space forms, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20(9), 2851-2859.
  • Grbović, M., Ne.ović, E. (2018). On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J Math Anal and Appl, 461, 219-233.
  • Hughston, L.P., Shaw, W.T. (1987). Real classical strings., Proc. Roy. Soc. London Ser. A, 414, 415-422.
  • Hughston, L.P., Shaw, W.T. (1987). Classical strings in ten dimensions., Proc. Roy. Soc. London. Ser. A, 414, 423-431.
  • Hughston, L.P., Shaw, W.T. (1988). Constraint-free analysis of relativistic strings., Classical Quantum Gravity, 5, 69-72.
  • Shaw, W.T. Twistors and strings., In Mathematics and General Relativity (Santa Cruz, CA, 1986), pages 337.363. Amer. Math. Soc., RI, 1988.
  • Z. Özdemir, Z. (2019). Magnetic Trajectories on Lightlike Surfaces, Submitted to the journal.
  • Şahin, B., Kiliç, E., Güneş, R. (2001). Null helices in R31. Differ. Geom. Dyn. Syst., 3 (2) (2001), 31-36.
  • Sakaki, M. (2010). Notes on null curves in Minkowski spaces, Turkish J. Math., 34 (3), 417-424.
  • Özdemir, M., Ergin, A.A. (2008). Parallel frame of non-lightlike curves, Missouri J. Math. Sci. 20(2), (2008), 127.137.
  • H. Urbantke, H. On Pinl's representation of null curves in n dimensions., In Relativity Today (Budapest, 1987), pages 34.36. World Sci. Publ., Teaneck, New York, 1988.
  • Yampolsky, A., Oparity, A. (2019). Generalized helices in three-dimensional Lie groups, Turk J Math 43, 1447 – 1455.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zehra Özdemir 0000-0001-9750-507X

Publication Date December 26, 2019
Submission Date July 30, 2019
Acceptance Date October 30, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Özdemir, Z. (2019). Null Cartan Helices in Lorentzian 3-Space: An Approximation. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 369-383. https://doi.org/10.35193/bseufbd.598439