Investigation of hip prosthesis wear with finite element analysis based on femur musculoskeletal system
Year 2019,
Volume: 6 Issue: 2, 268 - 277, 26.12.2019
Erkan Bahçe
,
Derya Karaman
,
Mehmet Sami Güler
References
- [1] Bitar, D., & Parvizi, J. (2015). Biological response to prosthetic debris. World journal of orthopedics, 6(2), 172.
- [2] Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in polymer science, 53, 86-168.
- [3] Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of biomechanics, 38(5), 1155-1163.
- [4] Hussenbocus S., Kosuge D., Solomon L. B., Howie D. W., & Oskouei R. H. (2015). Head-neck taper corrosion in hip arthroplasty. BioMed research international, 2015:758123.
- [5] Ramos A., Relvas C., Completo A., & Simões J. A. (2013). The formation of cracks at cement interfaces of different femoral stem designs. European Orthopaedics and Traumatology, 4(4), 205-215.
- [6] Kara, F., Aslantaş, K., & Cicek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74.
- [7] Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149, 257-262.
- [8] Arabnejad, S., Johnston, B., Tanzer, M., Pasini, & D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress‐shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.
- [9] Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., & Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675-681.
- [10] Saravana, K. G., & George S. P. (2017). Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(2), 149-159.
- [11] Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation. Journal of Biomechanics, 63, 47-54.
- [12] Westerman, A. P., Moor, A. R., Stone, M. H., & Stewart, T. D. (2018). Hip stem fatigue: The implications of increasing patient mass. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(5), 520-530.
- [13] Korhonen, R. K., Koistinen, A., Konttinen, Y. T, Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups–finite element simulations and experimental tests. Biomedical engineering online, 4(1), 32.
- [14] Saikko, V. (2019). Effect of wear, acetabular cup inclination angle, load and serum degradation on the friction of a large diameter metal-on-metal hip prosthesis. Clinical Biomechanics.
- [15] Baxmann, M., Pfaff, A. M., Schilling, C., Grupp, T. M., & Morlock, M. M. (2017). Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology, 12, 1-7.
- [16] Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics: a systematic review of design issues and solutions. Biomedical engineering online, 15(3), 140.
- [17] ISO 14242-1: 2014, Implants for surgery - Wear of total hip-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test, 2012.
- [18] Aherwar, A., Singh, A. K., & Patnaik, A., (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23-43.
- [19] Sobotta, J., 2006. Atlas de anatomia humana (Vol. 2). Ed. Médica Panamericana.
KALÇA PROTEZLERİNDE OLUŞAN AŞINMANIN FEMUR KAS-İSKELET SİSTEMİ TABANLI SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ
Year 2019,
Volume: 6 Issue: 2, 268 - 277, 26.12.2019
Erkan Bahçe
,
Derya Karaman
,
Mehmet Sami Güler
References
- [1] Bitar, D., & Parvizi, J. (2015). Biological response to prosthetic debris. World journal of orthopedics, 6(2), 172.
- [2] Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in polymer science, 53, 86-168.
- [3] Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of biomechanics, 38(5), 1155-1163.
- [4] Hussenbocus S., Kosuge D., Solomon L. B., Howie D. W., & Oskouei R. H. (2015). Head-neck taper corrosion in hip arthroplasty. BioMed research international, 2015:758123.
- [5] Ramos A., Relvas C., Completo A., & Simões J. A. (2013). The formation of cracks at cement interfaces of different femoral stem designs. European Orthopaedics and Traumatology, 4(4), 205-215.
- [6] Kara, F., Aslantaş, K., & Cicek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74.
- [7] Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149, 257-262.
- [8] Arabnejad, S., Johnston, B., Tanzer, M., Pasini, & D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress‐shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.
- [9] Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., & Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675-681.
- [10] Saravana, K. G., & George S. P. (2017). Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(2), 149-159.
- [11] Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation. Journal of Biomechanics, 63, 47-54.
- [12] Westerman, A. P., Moor, A. R., Stone, M. H., & Stewart, T. D. (2018). Hip stem fatigue: The implications of increasing patient mass. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(5), 520-530.
- [13] Korhonen, R. K., Koistinen, A., Konttinen, Y. T, Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups–finite element simulations and experimental tests. Biomedical engineering online, 4(1), 32.
- [14] Saikko, V. (2019). Effect of wear, acetabular cup inclination angle, load and serum degradation on the friction of a large diameter metal-on-metal hip prosthesis. Clinical Biomechanics.
- [15] Baxmann, M., Pfaff, A. M., Schilling, C., Grupp, T. M., & Morlock, M. M. (2017). Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology, 12, 1-7.
- [16] Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics: a systematic review of design issues and solutions. Biomedical engineering online, 15(3), 140.
- [17] ISO 14242-1: 2014, Implants for surgery - Wear of total hip-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test, 2012.
- [18] Aherwar, A., Singh, A. K., & Patnaik, A., (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23-43.
- [19] Sobotta, J., 2006. Atlas de anatomia humana (Vol. 2). Ed. Médica Panamericana.