Research Article
BibTex RIS Cite

Investigation of hip prosthesis wear with finite element analysis based on femur musculoskeletal system

Year 2019, Volume: 6 Issue: 2, 268 - 277, 26.12.2019
https://doi.org/10.35193/bseufbd.611874

Abstract

The use of hip prostheses
increases with increasing average life expectancy and population. In spite of
the superior clinical success, loosening of the hip prostheses and the
resumption of painful processes due to abrasion have become expected. In order
to prevent this, the studies carried out in vitro have been tested in the field
of health. In this article, in order to provide the in vitro test conditions in
hip prostheses in shorter times, analyses were performed by Finite Element
Method which defined musculoskeletal simulation. For this purpose, femoral bone
of adult patient, hip prosthesis and 172 muscle unit load value were used. As a
result of the analyzes, it was determined that the muscle systems reduce the
wear depth and stresses.

References

  • [1] Bitar, D., & Parvizi, J. (2015). Biological response to prosthetic debris. World journal of orthopedics, 6(2), 172.
  • [2] Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in polymer science, 53, 86-168.
  • [3] Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of biomechanics, 38(5), 1155-1163.
  • [4] Hussenbocus S., Kosuge D., Solomon L. B., Howie D. W., & Oskouei R. H. (2015). Head-neck taper corrosion in hip arthroplasty. BioMed research international, 2015:758123.
  • [5] Ramos A., Relvas C., Completo A., & Simões J. A. (2013). The formation of cracks at cement interfaces of different femoral stem designs. European Orthopaedics and Traumatology, 4(4), 205-215.
  • [6] Kara, F., Aslantaş, K., & Cicek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74.
  • [7] Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149, 257-262.
  • [8] Arabnejad, S., Johnston, B., Tanzer, M., Pasini, & D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress‐shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.
  • [9] Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., & Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675-681.
  • [10] Saravana, K. G., & George S. P. (2017). Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(2), 149-159.
  • [11] Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation. Journal of Biomechanics, 63, 47-54.
  • [12] Westerman, A. P., Moor, A. R., Stone, M. H., & Stewart, T. D. (2018). Hip stem fatigue: The implications of increasing patient mass. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(5), 520-530.
  • [13] Korhonen, R. K., Koistinen, A., Konttinen, Y. T, Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups–finite element simulations and experimental tests. Biomedical engineering online, 4(1), 32.
  • [14] Saikko, V. (2019). Effect of wear, acetabular cup inclination angle, load and serum degradation on the friction of a large diameter metal-on-metal hip prosthesis. Clinical Biomechanics.
  • [15] Baxmann, M., Pfaff, A. M., Schilling, C., Grupp, T. M., & Morlock, M. M. (2017). Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology, 12, 1-7.
  • [16] Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics: a systematic review of design issues and solutions. Biomedical engineering online, 15(3), 140.
  • [17] ISO 14242-1: 2014, Implants for surgery - Wear of total hip-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test, 2012.
  • [18] Aherwar, A., Singh, A. K., & Patnaik, A., (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23-43.
  • [19] Sobotta, J., 2006. Atlas de anatomia humana (Vol. 2). Ed. Médica Panamericana.

KALÇA PROTEZLERİNDE OLUŞAN AŞINMANIN FEMUR KAS-İSKELET SİSTEMİ TABANLI SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ

Year 2019, Volume: 6 Issue: 2, 268 - 277, 26.12.2019
https://doi.org/10.35193/bseufbd.611874

Abstract

Kalça protez kullanımı artan ortalama yaşam süresine
ve nüfusa bağlı olarak gün geçtikçe artmaktadır. Üstün klinik başarıya rağmen aşınmaya
bağlı olarak kalça protezlerinin gevşemesi ve ağrılı süreçlerin tekrar
başlaması beklenen bir durum haline gelmiştir. Bunların engellenebilmesi için
yapılan çalışmalar in vitro ortamlarda test edilerek sağlık alanında gelişmeler
kaydetmektdir. Bu makalede de kalça protezlerinde ki in vitro test koşullarını
daha kısa sürelerde sağlamak amacıyla kas-iskelet simülasyon tanımlanan Sonlu
Elemanlar Yöntemi ile analizler gerçekleştirildi. Bunun için erişkin hastaya
ait femur kemiği, bu kemiğe uygun kalça protezi ve 172 adet kas birim yük
değeri kullanıldı. Yapılan analizler sonucunda kas sistemlerinin aşınma
derinliğini ve gerilmeleri azalttığı belirlendi. 

References

  • [1] Bitar, D., & Parvizi, J. (2015). Biological response to prosthetic debris. World journal of orthopedics, 6(2), 172.
  • [2] Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in polymer science, 53, 86-168.
  • [3] Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of biomechanics, 38(5), 1155-1163.
  • [4] Hussenbocus S., Kosuge D., Solomon L. B., Howie D. W., & Oskouei R. H. (2015). Head-neck taper corrosion in hip arthroplasty. BioMed research international, 2015:758123.
  • [5] Ramos A., Relvas C., Completo A., & Simões J. A. (2013). The formation of cracks at cement interfaces of different femoral stem designs. European Orthopaedics and Traumatology, 4(4), 205-215.
  • [6] Kara, F., Aslantaş, K., & Cicek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74.
  • [7] Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149, 257-262.
  • [8] Arabnejad, S., Johnston, B., Tanzer, M., Pasini, & D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress‐shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.
  • [9] Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., & Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675-681.
  • [10] Saravana, K. G., & George S. P. (2017). Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(2), 149-159.
  • [11] Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation. Journal of Biomechanics, 63, 47-54.
  • [12] Westerman, A. P., Moor, A. R., Stone, M. H., & Stewart, T. D. (2018). Hip stem fatigue: The implications of increasing patient mass. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(5), 520-530.
  • [13] Korhonen, R. K., Koistinen, A., Konttinen, Y. T, Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups–finite element simulations and experimental tests. Biomedical engineering online, 4(1), 32.
  • [14] Saikko, V. (2019). Effect of wear, acetabular cup inclination angle, load and serum degradation on the friction of a large diameter metal-on-metal hip prosthesis. Clinical Biomechanics.
  • [15] Baxmann, M., Pfaff, A. M., Schilling, C., Grupp, T. M., & Morlock, M. M. (2017). Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology, 12, 1-7.
  • [16] Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics: a systematic review of design issues and solutions. Biomedical engineering online, 15(3), 140.
  • [17] ISO 14242-1: 2014, Implants for surgery - Wear of total hip-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test, 2012.
  • [18] Aherwar, A., Singh, A. K., & Patnaik, A., (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23-43.
  • [19] Sobotta, J., 2006. Atlas de anatomia humana (Vol. 2). Ed. Médica Panamericana.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erkan Bahçe 0000-0001-5389-5571

Derya Karaman 0000-0001-5371-9332

Mehmet Sami Güler 0000-0003-0414-7707

Publication Date December 26, 2019
Submission Date August 27, 2019
Acceptance Date December 17, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

APA Bahçe, E., Karaman, D., & Güler, M. S. (2019). KALÇA PROTEZLERİNDE OLUŞAN AŞINMANIN FEMUR KAS-İSKELET SİSTEMİ TABANLI SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 268-277. https://doi.org/10.35193/bseufbd.611874